Study of charge multiplication on high irradiated n-in-p silicon strip sensors

Paul Schade

Bachelorarbeit

An der Fakultät für Physik
Institut für Experimentelle Kernphysik (IEKP)

Erstgutachter: Prof. Dr. Thomas Müller
Zweitgutachter: Dr. Alexander Dierlamm
Betreuender Mitarbeiter: Daniel Schell

Karlsruhe, 27. Oktober 2016
Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.

Karlsruhe, 27. Oktober 2016

(Paul Schade)
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.3</td>
<td>Zwischenstreifenkapazität (C_{int})</td>
<td>20</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Zusammenfassung Probestation</td>
<td>21</td>
</tr>
<tr>
<td>7.2</td>
<td>Messergebnisse der ALiBaVa Station</td>
<td>23</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Sensor mit schmalen Streifen, $F = 1 \cdot 10^{15} \text{ cm}^{-2}$</td>
<td>23</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Sensor mit breiten Streifen, $F = 1 \cdot 10^{15} \text{ cm}^{-2}$</td>
<td>24</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Sensor mit schmalen Streifen, $F = 3 \cdot 10^{15} \text{ cm}^{-2}$</td>
<td>27</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Sensor mit breiten Streifen, $F = 3 \cdot 10^{15} \text{ cm}^{-2}$</td>
<td>29</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Sensor mit schmalen Streifen, $F = 5 \cdot 10^{15} \text{ cm}^{-2}$</td>
<td>31</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Sensor mit breiten Streifen, $F = 5 \cdot 10^{15} \text{ cm}^{-2}$</td>
<td>32</td>
</tr>
<tr>
<td>7.2.7</td>
<td>Vergleich der Sensoren</td>
<td>34</td>
</tr>
<tr>
<td>7.2.7.1</td>
<td>Das Clustersignal</td>
<td>34</td>
</tr>
<tr>
<td>7.2.7.2</td>
<td>Das Signal zu Rauschen Verhältnis</td>
<td>36</td>
</tr>
</tbody>
</table>

8 Die Zusammenfassung

Literaturverzeichnis
Abbildungsverzeichnis

3.1 Siliziumgitter .. 5
3.2 n-dotiertes Siliziumgitter 6
3.3 p-dotiertes Siliziumgitter 6
3.4 p-in-n Streifendiode ... 7

7.1 Leckstromkurven Probestation 20
7.2 Zwischenstreifenwiderstand Probestation 21
7.3 Zwischenstreifenwiderstand Probestation 22
7.4 Zwischenstreifenkapazität Probestation 22
7.5 StripP90W6_2_1 Leckstromkurven 23
7.6 StripP90W6_2_1 Clustersignal 24
7.7 StripP90W56_1_1 Leckstromkurven 25
7.8 StripP90W56_1_1 Clustersignal 26
7.9 StripP90W56_1_1 Clustersignal bei 900 V 26
7.10 StripP90W6_1_17 Leckstromkurven 27
7.11 StripP90W6_1_17 Clustersignal 28
7.12 StripP90W6_1_17 Clustersignal Vergleich 28
7.13 StripP90W6_1_17 Clustersignal vor Bestrahlung 29
7.14 StripP90W56_1_11 Leckstromkurven 30
7.15 StripP90W56_1_11 Clustersignal 30
7.16 StripP90W6_1_1 Leckstromkurven 31
7.17 StripP90W6_1_1 Clustersignal 32
7.18 StripP90W56_2_17 Leckstromkurven 33
7.19 StripP90W56_2_17 Clustersignal 33
7.20 Signal bei 900 V .. 34
7.21 Vergleich Etasignal ohne Annealing 35
7.22 Signal bei 900 V .. 35
7.23 Signal zu Rauschen bei 900 V 36
Tabellenverzeichnis

6.1 Verwendete Sensoren ... 15
6.2 Annealingschritte .. 17
1. Die Einleitung

Die Forschung ist soweit gekommen, dass subatomare Kleinstteile untersucht werden. Um diese Teilchen zu erforschen, sind Experimente mit gewaltigen Energien und haushohe Versuchsaufbauten notwendig.

Eines dieser Experimente ist das CMS\(^1\) am LHC\(^2\) am CERN\(^3\) in Meyrin bei Genf in der Schweiz.

Dort werden unter anderem Streifensensoren verbaut, die die Flugbahn von geladenen Teilchen bestimmen sollen. Mit einer höher werdenden Rate an Teilchenkollisionen entsteht eine steigende Anzahl an Zerfallsprodukten, die alle von den Streifensensoren erfasst werden sollen. Die steigende Rate ist dafür verantwortlich, dass die Sensoren höherer Strahlung ausgesetzt sind.

Damit das CMS auch in Zukunft zuverlässige Messergebnisse liefert, werden verschiedene Sensorarchitekturen getestet, um das Verhalten bei langen Betriebszeiten zu untersuchen.

\(^1\)Compact Muon Solenoid
\(^2\)Large Hadron Collider, deutsche Bezeichnung: Großer Hadronen-Speicherring
\(^3\)Conseil Européen pour la Recherche Nucléaire, auf Deutsch: Europäische Organisation für Kernforschung
2. CERN, LHC und CMS

2.1 Der LHC am CERN

Der LHC ist mit einem Umfang von ca. 27 km der größte Beschleunigerring der Welt\cite{Hom16b}. Im LHC werden Protonenbündel auf annähernd Lichtgeschwindigkeit c beschleunigt und zur Kollision gebracht. Aktuell stoßen diese Protonenbündel mit einer Schwerpunktsenergie von 13 TeV aufeinander\cite{Hom16a}.

Um mehr Ereignisse aufzeichnen zu können, wird die Luminosität immer weiter erhöht. Die Luminosität beschreibt die Anzahl an Teilchenkollisionen pro Fläche und Zeitraum. Das heißt, dass die Frequenz der Teilchenkollisionen erhöht werden soll. Am LHC stehen derzeit vier große Experimente: ATLAS1, ALICE2, CMS und LHCb3 und noch weitere kleinere Experimente.

2.2 Das CMS-Experiment

Dem CMS-Experiment gelang 2012 gemeinsam mit dem ATLAS-Experiment der Nachweis des Higgs-Bosons\cite{Hom12}. Ein Teilchen, das bereits in den 1960er Jahren von Peter Higgs postuliert wurde\cite{Hig64}.

1AToroidal LHC ApparatuS
2ALarge Ion Collider Experiment
3Large Hadron Collider beauty
3. Der Siliziumstreifensensor

3.1 Das Element Silizium

Silizium ist ein Element der vierten Hauptgruppe des Periodensystems. Im festen Zustand bilden die Siliziumatome ein kubisch-flächenzentriertes Gitter. Dabei gehen die vier Valenzelektronen eines Atoms kovalente Bindungen mit den Nachbaratomen ein (siehe Abbildung 3.1). Silizium ist den Halbleitern zuzuordnen. Das heißt, die Leitfähigkeit ist stark von der Temperatur abhängig. Für Temperatur \(T \to 0 \text{ K} \) geht die Leitfähigkeit \(\sigma \to 0 \frac{S}{m} \). Bei höheren Temperaturen können kovalente Bindungen aufgebrochen werden. Dadurch stehen wieder freie Ladungsträger zur Verfügung und die Leitfähigkeit steigt an. Durch Dotierung wird die Leitfähigkeit ebenso vergrößert.

3.1.1 n-Dotierung von Silizium

Abbildung 3.1: 2-dimensionale Darstellung der Bindungen des Siliziumgitters: Eigenskizze nach Hen06a

3.1.2 p-Dotierung von Silizium

Bei der p-Dotierung werden Atome der 3. Hauptgruppe, zum Beispiel Aluminium oder Bor, in das Gitter eingesetzt. Dadurch entstehen Elektronenlöcher im Gitter, die auch als Ladungsträger dienen (siehe Abbildung 3.3).

3.2 Die Siliziumdiode

3.3 Der Siliziumstreifensensor

3.4 Strahlenschäden am Sensor

solcher Defekt im Volumen der Sperrschicht der Diode, wird die Funktionsweise beeinflusst. Die Defekte ermöglichen eine leichtere thermische Generation von Ladungsträgerpaaren, sodass der Leckstrom ansteigt.

3.5 Annealing des Sensors

Das Annealing\footnote{auf Deutsch: Ausheilen} beschreibt den Vorgang, bei dem durch thermische Anregung des Streifensensors Strahlenschäden ausgeheilt werden. Durch die Erhöhung der Temperatur steigt die Bewegung der Atome im Gitter. Dabei können Defekte neue Verbindungen, die andere Eigenschaften als der ursprüngliche Aufbau haben können, mit anderen Defekten oder Fremdatomen eingehen oder Defekte werden durch Atome, die die Fehlstellen füllen, zurückgebildet. Die Strahlenschäden sowie der Leckstrom werden geringer. Der Prozess der Ausheilung ist begrenzt, da sich neue stabile Verbindungen bilden. \cite{Mo99}.
4. Die verwendeten Messapparaturen

4.1 Die Probestation

Die Probestation dient zur Messung der elektrischen Eigenschaften der Siliziumsensoren. So können beispielsweise der Leckstrom, die Zwischenstreifenwiderstände oder die Zwischenstreifenkapazität gemessen werden.

4.1.1 Bauteile und Funktion der Probestation

Die Probestation besteht aus einer verschließbaren Metallbox, die im Inneren mit schwarzem Stoff ausgekleidet ist. So soll verhindert werden, dass Licht auf den Sensor trifft und die Messergebnisse beeinflusst. Zudem kann so die Luftfeuchtigkeit in der Box gering gehalten werden. Dafür kann zusätzlich Trockenuft in die Box strömen.

Über dem Tisch befindet sich ein Mikroskop, um die Nadeln genau setzen zu können.

Außerhalb der Box befinden sich mehrere Relais, die zum Schalten der Stromkreise dienen. Zudem sind verschiedene Spannungsversorgungen sowie Messgeräte für Strom, Spannung und Kapazität vorhanden.

Alle Messgeräte, die Spannungsversorgungen, sowie die Relais sind mit einem Computer verbunden. Dort lassen sich Messungen mit einer LabVIEW Software steuern.
4.2 Die ALiBaVa Station

Das ALiBaVa\footnote{A Liverpool Barcelona Valencia Readout System, \url{http://www.alibavasystems.com/}} ist ein elektronisches System zum Auslesen von Signalen aus den Streifen-sensoren. Die ALiBaVa Station umfasst zusätzlich einen Versuchsaufbau, der Messungen von Signalen ermöglicht. Die Signale werden dabei durch radioaktive Quellen oder Laser, die auf die Sensoren gerichtet sind, erzeugt.

4.2.1 Bauteile und Funktion der ALiBaVa Station

Spannungsquellen sowie Strom- und Spannungsmessgeräte befinden außerhalb der Box.

\[\text{\footnote{\url{http://www.alibavasystems.com/}}}\]
5. Die Messgrößen

5.1 Messgrößen für die Probestation

In diesem Abschnitt werden die Messgrößen der Streifensensoren aufgelistet, die mit der Probestation gemessen wurden.

5.1.1 Leckstromkurve (IV)

5.1.2 Zwischenstreifenwiderstand (R_{int})

5.1.3 Zwischenstreifenkapazität (C_{int})

5.2 Messgrößen für die ALiBaVa-Station

In diesem Abschnitt werden die Messgrößen der Streifensensoren aufgelistet, die mit der ALiBaVa-Station gemessen wurden.

5.2.1 Leckstromkurve (IV)

Auch an der ALiBaVa-Station lassen sich Leckstromkurven aufzeichnen. Dazu wird der Strom bei angelegter Spannung zwischen Sensorrückseite und Biasbond gemessen.

5.2.2 ALiBaVA-Messung

Für jede ALiBaVa Messung muss zunächst ein Pedestal- sowie ein Calibrationrun durchgeführt werden. Anschließend folgt die eigentliche Messung.

5.2.2.1 Pedestal- und Calibrationrun

Der Pedestalrun dient zur Bestimmung des Untergrunds. Hierzu wird der Chip bei zufälligen Triggersignalen ausgelesen. Für das Pedestal gilt nach [Fre12]

\[P_s = \frac{1}{N} \sum_{i=1}^{N} ADC_{s,i}. \]

(5.1)

Wobei \(s \) der Index des Streifens ist und \(N \) die Anzahl der zufälligen Trigger. \(ADC \) ist das Signal, das gemessen wird.

Das Rauschen eines Streifens ergibt sich aus der mittleren quadratischen Abweichung vom Pedestal. Es gilt nach [Fre12]

\[N_s = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (ADC_{s,i} - P_s)^2}. \]

(5.2)

Von gemessenen Signalen der Signalmessung eines Streifen wird dieser Wert subtrahiert.

5.2.2.2 Signalbestimmung mit Quelle

\(^{1}\text{Analog Digital Count}\)

5.2.3 Die Ladungsmultiplikation

Die Ladungsvermehrung tritt bei starken elektrischen Feldern auf. Das heißt, dass eine erhöhte Spannung sowie schmale Streifen den Effekt wahrscheinlicher machen, da in beiden Fällen die Feldstärke an den Streifen zunimmt [Ver12].

$^2\text{Most Probable Value}$
6. Die Durchführung

6.1 Verwendete Sensoren

6.2 Messungen an der Probestation

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>pitch (µm)</th>
<th>width (µm)</th>
<th>batch</th>
<th>Bestrahlung (n_{eq} cm^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strip_P90W6_2_1</td>
<td>90</td>
<td>6</td>
<td>new</td>
<td>1 \cdot 10^{15}</td>
</tr>
<tr>
<td>Strip_P90W6_1_17</td>
<td>90</td>
<td>6</td>
<td>old</td>
<td>3 \cdot 10^{15}</td>
</tr>
<tr>
<td>Strip_P90W6_1_1</td>
<td>90</td>
<td>6</td>
<td>new</td>
<td>5 \cdot 10^{15}</td>
</tr>
<tr>
<td>Strip_P90W56_1_1</td>
<td>90</td>
<td>56</td>
<td>new</td>
<td>1 \cdot 10^{15}</td>
</tr>
<tr>
<td>Strip_P90W56_1_11</td>
<td>90</td>
<td>56</td>
<td>old</td>
<td>3 \cdot 10^{15}</td>
</tr>
<tr>
<td>Strip_P90W56_2_17</td>
<td>90</td>
<td>56</td>
<td>new</td>
<td>5 \cdot 10^{15}</td>
</tr>
</tbody>
</table>

Tabelle 6.1: Die für die Messungen verwendeten Sensoren, aufgelistet mit technischen Eigenschaften.
6. Die Durchführung

Die Leckstromkurve (IV) wurde in Abhängigkeit von der angelegten Spannung bestimmt. Dazu musste lediglich die Biasnadel gesetzt sein, über die ein Strom gemessen wurde.

Auch die Zwischenstreifenkapazität (C_{int}) ist spannungsabhängig. Aber auch hier wurde im Rahmen dieser Arbeit nur eine Messung bei einer angelegten Biasspannung von 600 V durchgeführt. Es wurden zur Messung zwei Nadeln auf die AC-Pads zweier benachbarter Streifen gelegt. Ein LCR-Meter bestimmt dann die Kapazität zwischen den Streifen, bei einer eingestellten Frequenz von 1 MHz. Auch hier wurde der Tisch automatisch unter den Nadeln bewegt, um die Messung aller Streifen zu vereinfachen.

6.3 Messungen an der ALiBaVa Station

1ROOT ist eine Analysesoftware in der Teilchenphysik, die am CERN entwickelt wurde.
6.3. Messungen an der ALiBaVa Station

Tabelle 6.2: Auflistung der verschiedenen Annealingschritte

<table>
<thead>
<tr>
<th>Annealingschritt</th>
<th>Annealdauer in min</th>
<th>Temperatur in °C</th>
<th>Σ @RT in h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>60</td>
<td>180</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>60</td>
<td>350</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>60</td>
<td>550</td>
</tr>
<tr>
<td>5</td>
<td>76</td>
<td>60</td>
<td>1300</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>80</td>
<td>3200</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>80</td>
<td>8000</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>80</td>
<td>10000</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>80</td>
<td>15000</td>
</tr>
</tbody>
</table>

das Signal in Abhängigkeit zur Spannung und zum Annealingschritt sowie das Verhältnis von Signal zu Rauschen (S/N).
7. Auswertung der Messergebnisse

7.1 Messergebnisse der Probestation

An der Probestation wurden der Leckstrom, die Zwischenstreifenwiderstände sowie die Zwischenstreifenkapazitäten der Sensoren gemessen. Ziel war es, die Sensoren auf Funktionsfähigkeit zu überprüfen.

Alle Messungen wurden bei \(-20^\circ\text{C}\) und wie in Kapitel [6.2] beschrieben durchgeführt.

7.1.1 Leckstrom (IV)

Die Kurven der Sensoren verlaufen umso flacher, je geringer die Bestrahlung ist. Der Strom steigt für die am stärksten bestrahlten Sensoren bei einer Spannung von 1 000 V nicht über 100 \(\mu\text{A}\) an. Bei Stromstärken über 100 \(\mu\text{A}\) schaltet die Steuerungssoftware die Spannung automatisch ab. Da diese Stromstärke nie erreicht wird, können alle Messungen problemlos durchgeführt werden.

7.1.2 Zwischenstreifenwiderstand (R_{int})

In Abbildung [7.2] sind die Zwischenstreifenwiderstände (R_{int}) der einzelnen Streifen der Sensoren dargestellt.

Die meisten Werte liegen zwischen \(10^8 \Omega\) und \(10^9 \Omega\). Der Widerstand ist deutlich höher als der Widerstand zum Biasring, der bei etwa \(10^6 \Omega\) liegt. Diese Messung zeigt, dass auch die Zwischenstreifenwiderstände einen funktionsfähigen Sensor vermuten lassen.

Werte der Widerstände von mehr als \(10^{11} \Omega\) lassen sich vermutlich auf Messfehler zurückführen. Der Widerstand wird über die Steigung der Strom-Spannungskurve bestimmt. Hat eine Nadel keinen Kontakt zum Pad des Sensors wird ein Strom von 0 A gemessen. Aufgrund von Messungen Schwankt der Wert des Stroms um 0 A mit einer statistischen Ungenauigkeit. Zu der statistischen Ungenauigkeit kommen systematische Fehler
7. Auswertung der Messergebnisse

20

Abbildung 7.1: Leckstromkurven der verwendeten Sensoren, gemessen an der Probestation bei $-20^\circ C$.

der Messinstrumente. Dadurch werden Widerstände von weit über $10^{11} \, \Omega$ als Ergebnis bestimmt, die allerdings nicht vom tatsächlichen Widerstand abhängig sind.

Messungen von baugleichen Sensoren (siehe Abbildung [7.3]), die nicht bestrahlt wurden, zeigen, dass der Zwischenstreifenwiderstand durch die Bestrahlung sinkt.

7.1.3 Zwischenstreifenkapazität (C_{int})

In Abbildung [7.4] sind die Zwischenstreifenkapazitäten der Sensoren dargestellt.

Zu erkennen ist, dass die Kapazitäten zwischen zwei benachbarten Streifen innerhalb eines Sensors annähernd konstant sind. Lediglich die Kapazitäten der Streifen, die am Rand des Sensor liegen, weichen leicht davon ab. Daraus folgt, dass die Streifen, die nicht am Rand des Sensors liegen, fast alle identisch sind.

Je breiter die Streifen sind, desto höher ist die Kapazität. Das lässt sich damit erklären, dass die Ränder der breiten Streifen näher aneinander liegen, als die der schmaleren Streifen. Das Verhalten ist wie bei einem Plattenkondensator, dessen Kapazität reziprok vom Abstand der Platten abhängt.

Die Zwischenstreifenkapazität der 6 μm breiten Streifen liegt bei etwa 0,25 pF, die der 56 μm breiten Streifen liegt bei etwa 0,7 pF. Der Sensor Strip_P90W6_1 zeigt bei vielen Streifen eine Kapazität von etwa 0 F. Das lässt sich auf die Messung zurückführen. Hier war es bei vielen Streifen nicht möglich einen sauberen Kontakt zwischen Nadel und Pad herzustellen. Die Kapazität zwischen den Nadeln ist so gering, dass die gemessene Kapazität um 0 F schwankt. Es sind oftmals sogar negative Werte gemessen worden, da das LCR-Meter von der gemessenen Kapazität einen vorher bestimmten Offset abzieht. Eine negative Kapazität ergibt physikalisch keinen Sinn und zeigt, dass es sich um einen Fehler in der Messung handelt.
7.1. Messergebnisse der Probestation

Abbildung 7.2: Zwischenstreifenwiderstände der verwendeten Sensoren, gemessen an der Probestation bei $-20^\circ C$ und 600 V.

7.1.4 Zusammenfassung Probestation

Die Messungen der Probestation zeigen, wovon die gemessenen Größen hauptsächlich abhängen.

Die Messwerte zeigen zudem auf, dass alle Sensoren funktionsfähig sind und weitere Messungen an der ALiBaVa Station durchgeführt werden können.
7. Auswertung der Messergebnisse

Abbildung 7.3: *Zwischenstreifenwiderstände unbestrahlter Sensoren, gemessen an der Probestation bei \(20^\circ C\) und 85 V.*

Abbildung 7.4: *Zwischenstreifenkapazitäten der verwendeten Sensoren, gemessen an der Probestation bei \(-20^\circ C\) und 600 V.*
7.2 Messergebnisse der ALiBaVa Station

Nachdem die Funktionsfähigkeit der Sensoren an der Probestation validiert wurde, konnten die eigentlichen Messungen an der ALiBaVa-Station im Strahlungsbereich einer radioaktiven Quelle durchgeführt werden. Die Messungen sollen zeigen, wie sich das Signal und das Rauschen des Sensors in Abhängigkeit der Spannung und der Annealingdauer ändert. Besonderes Augenmerk wurde auf die Ladungsmultiplikation gelegt.

Auch hier wurden alle Messungen bei −20 °C und wie in Kapitel [6.3] beschrieben durchgeführt.

Zunächst werden die Messungen jeweils eines Sensors betrachtet. Anschließend werden die Sensoren miteinander verglichen.

7.2.1 Sensor mit schmalen Streifen, $F = 1 \cdot 10^{15} \text{ cm}^{-2}$ (Strip_P90W6_2_1)

Der Leckstrom

7. Auswertung der Messergebnisse

Abbildung 7.6: Strip_P90W6_2_1 F = 1 \cdot 10^{15} \frac{n_{eq}}{cm^2}. Clustersignal für alle Annealingschritte in Abhängigkeit der Spannung, gemessen an der ALiBaVa Station bei $-20^\circ C$.

Das Clustersignal

Die Clustersignale aller Annealingschritte weisen das gleiche Verhalten auf. Sie steigen mit der Spannung an. Vergleicht man das Verhältnis der Signale bei verschiedenen Annealingschritten, stellt man fest, dass das Clustersignal für Spannung bis 600 V bis zum vierten Annealingschritt leicht ansteigt. Von einem Signal von $9044 \pm 448 e^-$ bis zu einem Wert von $10700 \pm 531 e^-$ bei 600 V. Das ist eine Erhöhung von knapp 20 %. Danach fällt der Wert bis zu einem Minimalwert im siebten Schritt von $7965 \pm 396 e^-$ bei 600 V. Das entspricht noch knapp 90 % des ursprünglichen Wertes vor Annealing.

7.2.2 Sensor mit breiten Streifen, F = 1 \cdot 10^{15} \frac{n_{eq}}{cm^2} (Strip_P90W56_1_1)

Der Leckstrom

Die Leckstromkurven des Sensors Strip_P90W56_1_1 verlaufen mit jedem weiteren Annealingschritt flacher. Es ist das gleiche Verhalten wie der Sensor Strip_P90W6_2_1 aufweist. Allerdings knicken hier die Kurven bei hohen Spannungen nicht ein.

Eine Ausnahme bildet die Kurve nach dem ersten Annealingschritt. Sie verläuft deutlich steiler als die anderen Kurven. Später stellte sich heraus, dass ein Temperatursensor defekt war. Die Temperatur war demnach höher als vermutet, was zu einem Anstieg der Leckstromkurve führte. Die Kurve wurde deshalb aus dem Plot entfernt.

Das Clustersignal

Bei diesem Sensor steigt das Signal für Spannungen bis 600 V nur mit dem ersten Annealingschritt. Mit jedem weiteren Schritt fällt das Signal wieder ab. Das Signal beträgt...
Abbildung 7.7: Strip_P90W56_1_1 IV

Abbildung 7.7: Strip_P90W56_1_1, $F = 1 \cdot 10^{15} \frac{n_{eq}}{cm^2}$ Leckstromkurven für alle Annealingschritte, gemessen an der ALiBaVa Station bei $-20^\circ C$.

bei der ersten Messung $11\,640 \pm 579\,e^-$ und steigt mit dem ersten Annealingschritt auf $13\,430 \pm 667\,e^-$ bei 600 V. Mit dem letzten Annealingschritt ist das Signal auf $9\,673 \pm 481\,e^-$ gesunken.

Bei höheren Spannungen liegen auch hier die Signale wieder sehr dicht beieinander. Auffällig ist, dass das Signal nach dem sechsten und siebten Annealingschritt bei 750 V höher ist als bei 900 V. Ein Blick auf die Analyse (siehe Abbildung 7.9) der Messwerte zeigt, dass das Signal zwei Peaks aufweist. Betrachtet man nur den Peak bei höherer Ladung, so verhält sich das Signal wie erwartet. Das Signal mit niedrigerer Ladung kann durch Rauschen im Sensor entstehen.
26

7. Auswertung der Messergebnisse

Abbildung 7.8: *Strip_P90W56_1_1*, \(F = 1 \cdot 10^{15} \frac{n_{eq}}{cm^2} \) Clustersignal für die Annealingschritte 0 und 2 – 7 in Abhängigkeit der Spannung, gemessen an der ALiBaVa Station bei \(-20^\circ C\).

Abbildung 7.9: *Strip_P90W56_1_1*, \(F = 1 \cdot 10^{15} \frac{n_{eq}}{cm^2} \) Clustersignal bei 900 V, gemessen an der ALiBaVa Station bei \(-20^\circ C\).
7.2.1 Messergebnisse der ALiBaVa Station 27

Abbildung 7.10: Strip P90W6_1_17 IV Leckstromkurven für alle Annealingschritte, gemessen an der ALiBaVa Station bei −20°C.

7.2.3 Sensor mit schmalen Streifen, \(F = 3 \cdot 10^{15} \, \text{cm}^{-2} \) (Strip P90W6_1_17)

Der Leckstrom

Zu erkennen ist, dass die Leckstromkurve von der ersten Messung bis zum sechsten Annealingschritt fast linear verläuft und mit jedem Schritt flacher wird. Ab dem siebten Annealingschritt verändert sich das Verhalten. Mit jedem Annealingschritt steigt der Strom bei maximaler Spannung an, sodass nach dem letzten Annealingschritt der Strom bei 900 V annähernd wieder den Wert der ersten Messung erreicht.

Das Clustersignal

Das Clustersignal weist ein ähnliches Verhalten wie die Leckstromkurven auf. Bis zum sechsten Schritt steigt das Signal fast linear mit der Spannung an. Die Kurven verschiedener Annealingschritte liegen dabei sehr dicht beieinander.

Ab dem siebten Annealingschritt ändert sich dieses Verhalten. Das Signal fällt leicht zwischen einer Spannung von 300 V und einer Spannung von 450 V. Die Signale bei 450 V für diese Annealingschritte liegen unterhalb der Signale der vorherigen Annealingschritte. Bei höheren Spannungen steigt das Signal mit der Spannung schnell an und übertrifft die Signale bei geringerem Annealing bei 750 V und 900 V. Mit jedem weiteren Annealingschritt steigt das Signal für hohe Spannungen weiter an. So liegt das Signal bei 900 V für...
Abbildung 7.11: *Strip_P90W6_1_17 Clustersignal* für alle Annealingschritte in Abhängigkeit der Spannung, gemessen an der ALiBaVa Station bei -20°C.

Abbildung 7.12: *Vergleich der Clustersignal-Histogramme: links nach dem ersten Annealingschritt, rechts nach dem letzten Annealingschritt*

die erste Messung bei 9.146 ± 453 e$^-$ und steigt mit dem neunten Annealingschritt auf 18.520 ± 1033 e$^-$. Das entspricht dem doppelten Signal bei gleicher Spannung.

Hier hat eine Ladungsvermehrunng stattgefunden. Sie beginnt nach einer Annealingzeit von etwa 8000 h und steigt mit weiterer Annealingzeit weiter an.

In Abbildung 7.12 sind die Histogramme der Clustersignale ohne, auf der linken Seite, und mit Ladungsvermehrunng, auf der rechten Seite, zu sehen. Es ist zu erkennen, dass der Landau-Gauss-Fit bei Ladungsvermehrunng nicht gut zum Verlauf der Verteilung passt. Der Hochpunkt der Fit-Kurve liegt bei einer niedrigeren Ladung als der Hochpunkt der tatsächlichen Verteilung. Das ist damit zu erklären, dass Ereignisse mit höheren Ladungen wahrscheinlicher verstärkt werden, als solche mit geringer Ladungen. Es sind mehr Elektronen vorhanden, die eine Ladungswelle auslösosen können.

Betrachtet man die Maximalstelle der tatsächlichen Verteilung im Vergleich zur Maximalstelle der Fit-Kurve zeigt sich eine höhere Ladung, die den Ladungsvermehrunngseffekt noch deutlicher zeigt, als der MPV der Fit-Kurve.

Beim Histogramm ohne Ladungsvermehrunng zeigt der Landau-Gauss-Fit den gleichen Verlauf wie das Histogramm.

Das Signal vor Bestrahlung liegt, nach Messungen von Martin Printz (siehe Abbildung 7.13), bei 14.130 ± 705 e$^-$. Das heißt, dass das Signal um mindestens 30 % im Vergleich
7.2. Messergebnisse der ALiBaVa Station

Abbildung 7.13: Clustersignal Strip_P90W6_1_17 vor Bestrahlung, gemessen an der ALiBaVa Station bei 300 V und 20° C.

zum Signal vor der Bestrahlung anwächst.

7.2.4 Sensor mit breiten Streifen, \(F = 3 \cdot 10^{15} \text{ neq/cm}^2 \) (Strip_P90W56_1_11)

Der Leckstrom

Die Leckstromeinheiten verhalten sich ähnlich wie die Leckstromeinheiten des Sensors Strip_P90W6_1_17. Bis zum fünften Annealingschritt ist ein linearer Verlauf zu erkennen, der mit jedem Annealingschritt flacher verläuft. Annealingschritte sechs und sieben zeigen einen größeren Anstieg der Stromstärken, sodass die Stromstärke bei Höchstspannung bei Annealingschritt sieben die Stromstärke von Annealingschritt drei erreicht.

Das Clustersignal

Hier deutet sich eine Ladungsmultiplikation an, die vermutlich erst bei längeren Annealungszeiten eintreten wird.
7. Auswertung der Messergebnisse

Abbildung 7.14: Strip_P90W56_1_11, \(F = 3 \cdot 10^{15} \, \text{cm}^{-2} \) Leckstromkurven für alle Annealingschritte, gemessen an der ALiBaVa Station bei \(-20^\circ\)C.

Abbildung 7.15: Strip_P90W56_1_11 Clustersignal, \(F = 3 \cdot 10^{15} \, \text{cm}^{-2} \) Clustersignal für alle Annealingschritte in Abhängigkeit der Spannung, gemessen an der ALiBaVa Station bei \(-20^\circ\)C.
7.2.5 Sensor mit schmalen Streifen, $F = 5 \cdot 10^{15} \frac{n_{eq}}{cm^2}$ (Strip_P90W6_1_1)

Der Leckstrom

Das Clustersignal

Das Clustersignal zeigt hier bis zum sechsten Annealingschritt ein lineares Verhalten mit der Spannung. Je höher die Spannung, desto höher wird auch das Signal. Die Signale zueinander liegen sehr dicht. Ab dem siebten Annealingschritt liegt kein lineares Verhalten der Stromstärke in Abhängigkeit der Spannung mehr vor. Bei einer Spannung von 900 V sind die Signale der Annealingschritte sieben bis neun deutlich höher als die Signale der vorherigen Annealingschritte. Das Clustersignal nach Annealingschritt sieben liegt bei einem Wert von $9740 \pm 460 e^{-}$ über dem Schnitt der Schritte null bis sechs von $7905 \pm 396 e^{-}$. Nach Annealingschritt acht liegt das Signal bei $10970 \pm 523 e^{-}$ und nach Annealingschritt neun sogar bei $13320 \pm 634 e^{-}$. Das Signal des letzten Annealingschritts liegt damit fast 70% über dem Signalwert der Annealingschritte null bis sechs.

Bei einer Spannung von 750 V stechen nur die Signale der letzten zwei Annealingschritte heraus. Bei Spannungen darunter liegen alle Signale auf einem ähnlichen Niveau. Das Signal vor dem Annealing liegt bei dem vergleichbaren Sensor Strip_P90W6_1_17, nach Messungen von Martin Printz (siehe Abbildung 7.13), bei $14130 \pm 705 e^{-}$. Das heißt, dass hier keine Verstärkung des Signals, im Vergleich zum Signal vor Bestrahlung, stattgefunden hat.

Abbildung 7.16: Strip_P90W6_1_1, $F = 5 \cdot 10^{15} \frac{n_{eq}}{cm^2}$ Leckstromkurven für alle Annealingschritte, gemessen an der ALiBaVa Station bei $-20^\circ C$.
7. Auswertung der Messergebnisse

Abbildung 7.17: Strip_P90W6_1_1 Clustersignal für alle Annealingschritte in Abhängigkeit der Spannung, gemessen an der ALiBaVa Station bei −20°C.

7.2.6 Sensor mit breiten Streifen, $F = 5 \cdot 10^{15} \frac{n_{eq}}{cm^2}$ (Strip_P90W56_2_17)

Der Leckstrom

Das Clustersignal

Hier ist zu erkennen, dass sich die Kurven der Clustersignale einige Male mit den Kurven der Clustersignale anderer Annealingschritte kreuzen.

Insgesamt sind keine Kurven erkennbar, die ein auffälliges Verhalten aufzeigen. Es ist eine Tendenz zu erkennen, dass das Signal mit jedem weiteren Annealingschritt kleiner wird.

Die vielen Unregelmäßigkeiten lassen auf Ungenauigkeiten bei der Messung schließen, da die Werte dicht beieinander liegen und durch kleine Ungenauigkeiten die Verhältnisse der Signale zueinander stark beeinflusst werden.
7.2. Messergebnisse der ALiBaVa Station

Abbildung 7.18: Strip_P90W56_2_17, $F = 5 \cdot 10^{15} \, \text{n}_{\text{eq}} \, \text{cm}^{-2}$, Leckstromkurven für alle Annealingschritte, gemessen an der ALiBaVa Station bei -20°C.

Abbildung 7.19: Strip_P90W56_2_17, $F = 5 \cdot 10^{15} \, \text{n}_{\text{eq}} \, \text{cm}^{-2}$, Clustersignal für alle Annealingschritte in Abhängigkeit der Spannung, gemessen an der ALiBaVa Station bei -20°C.
7.2.7 Vergleich der Sensoren

7.2.7.1 Das Clustersignal

Die Bestrahlungsfluenz

Je höher die Strahlungsfluenz beim Bestrahlen war, desto niedriger fällt das Signal aus.

Das Verhalten lässt sich allerdings nicht zu jedem Zeitpunkt feststellen. Vergleicht man das Signal der Sensoren Strip_P90W56_1_11 und Strip_P90W56_2_17 ist vor dem Annealen das Signal des zweiten Sensors höher als das des ersten Sensors, obwohl die Fluenz bei Strip_P90W56_2_17 mit $5 \cdot 10^{15} \ \text{n}_{\text{eq}} \ \text{cm}^{-2}$ deutlich höher ist als bei Strip_P90W56_1_11, der mit $3 \cdot 10^{15} \ \text{n}_{\text{eq}} \ \text{cm}^{-2}$ bestrahlt wurde. Mit weiteren Annealingschritten zeigt sich allerdings, dass das Signal beim zweiten Sensor schneller fällt als beim ersten Sensor. Insgesamt ist zu erkennen, dass das Signal mit steigender Bestrahlungsfluenz sinkt.

Die Streifenbreite

Neben dem Verhalten der Sensoren in Abhängigkeit der Fluenz ist zu erkennen, dass die Sensoren mit breiten Streifen ein höheres Signal aufweisen als Sensoren mit schmalen.

Die Ladungsmultiplikation

Bei Sensoren mit schmalen Streifen tritt bei einer Bestrahlungslinien von \(3 \cdot 10^{15} \text{ n}_{eq} \text{ cm}^{-2}\) ab einer Annealingdauer von \(8000 \text{ h} \, @RT\) bei Spannungen über 750 V der Ladungsmultiplikationseffekt auf.

Die durch die Bestrahlung entstehenden Defekte verursachen starke elektrische Felder im Sensor, die den Ladungsmultiplikationseffekt ermöglichen. Betrachtet man die relativen Signal \(e\) (siehe Abbildung 7.22), die auf das Signal vor dem Annealing normiert sind, ist zu erkennen, dass die Verstärkung des Signals bei Bestrahlungslinien von \(3 \cdot 10^{15} \text{ n}_{eq} \text{ cm}^{-2}\) am größten ist. Bei einer Fluenz von \(5 \cdot 10^{15} \text{ n}_{eq} \text{ cm}^{-2}\) steigt die Ladung nach 8000 h@RT Annealing ebenfalls an. Bei den Messungen bis 15 000 h@RT wurde allerdings das Signal vor der Bestrahlung nicht übertroffen.
7. Auswertung der Messergebnisse

7.2.7.2 Das Signal zu Rauschen Verhältnis

Das Signal zu Rauschen Verhältnis verhält sich ähnlich wie das Clustersignal.

Die Bestrahlungsfluenz

Je höher die Bestrahlungsfluenz ist, desto niedriger ist das Signal zu Rauschen Verhältnis.

Die Streifenbreite

Die Ladungsmultiplikation

Die Sensoren, bei denen es zur Ladungsmultiplikation kommt, zeigen mit steigendem Signal auch ein steigendes Signal zu Rauschen Verhältnis.

Das Signal zu Rauschen Verhältnis wird durch Ladungsmultiplikation, wie das Signal, ebenfalls erhöht.

Abbildung 7.23: Vergleich des Signal zu Rauschen Verhältnis aller Sensoren bei 900 V, gemessen am ALiBaVa-Setup bei −20°C.
8. Die Zusammenfassung

Im Rahmen dieser Arbeit wurden hochbestrahlte n-in-p Siliziumstreifensensoren untersucht. Hauptaugenmerk lag hierbei auf dem Effekt der Ladungsmultiplikation, die bei einigen Sensoren nachgewiesen werden konnte.

Insamt wurden sechs unterschiedliche Sensoren untersucht. Jeweils drei Sensoren besaßen die gleiche Streifenbreite. Die eine Gruppe hatte eine Streifenbreite von 6 µm, die andere eine Breite von 56 µm. Bei beiden waren der Abstand zwischen den Streifenmitteln mit 90 µm gleich. Die Sensoren waren in drei Bestrahlungsfrequenzen eingeteilt. Es gab jeweils einen Sensor mit schmalen Streifen und einen Sensor mit breiten Streifen mit $F = 1 \cdot 10^{15} \, \text{n}_{\text{eq}} \, \text{cm}^{-2}$, $F = 3 \cdot 10^{15} \, \text{n}_{\text{eq}} \, \text{cm}^{-2}$ und $F = 5 \cdot 10^{15} \, \text{n}_{\text{eq}} \, \text{cm}^{-2}$. Alle Sensoren wurden mit Neutronen bestrahlt.

Die Sensoren wurden bei verschiedenen Annealingschritten untersucht. Das heißt, dass die Sensoren zwischen den Messungen für eine vorgegebene Zeit bei einer vorgegebenen Temperatur erwärmt wurden. Durch die thermische Anregung können Schäden, die durch die Bestrahlung entstehen, teilweise ausheilen oder neue stabile Verbindungen bilden.

Die Sensoren wurden zudem bei unterschiedlichen Betriebsspannungen untersucht. Die Messungen wurden im Bereich von 300 V bis 900 V vorgenommen.

Es wurde erwartet, dass der Ladungsmultiplikationseffekt bei starken elektrischen Feldern auftritt. Das elektrische Feld im Sensor wächst mit der Spannung und ist bei schmalen Streifen in Streifenmitte stärker als bei breiteren Streifen, daher wurde der Effekt vor allem bei den Sensoren mit schmalen Streifen bei hoher Spannung erwartet. Vorherige Messungen zeigen, dass der Effekt erst ab einer Bestrahlungsstufe von $3 \cdot 10^{15} \, \text{n}_{\text{eq}} \, \text{cm}^{-2}$ auftritt und erst nach einer gewissen Annealingzeit eintritt.

Die Messungen ergaben, dass in der Regel das Signal der Sensoren mit der Spannung steigt und mit der Annealingdauer abnimmt. Anders verhielten sich die Sensoren mit schmalen Streifen und einer Strahlungsfrequenz von über $3 \cdot 10^{15} \, \text{n}_{\text{eq}} \, \text{cm}^{-2}$. Hier fand bei Spannungen über 750 V nach 8000 h@RT eine deutliche Erhöhung des Signals statt. Bei diesen Sensoren wurden deshalb weitere Annealingschritte vorgenommen, wodurch das Signal bei hohen Spannungen weiter zunahm. Bei dem Sensor mit schmalen Streifen und einer Bestrahlungsfrequenz von $3 \cdot 10^{15} \, \text{n}_{\text{eq}} \, \text{cm}^{-2}$ fand eine Ladungsmultiplikation statt. Der Sensor mit schmalen Streifen und einer Bestrahlungsfrequenz von $5 \cdot 10^{15} \, \text{n}_{\text{eq}} \, \text{cm}^{-2}$ kam es ebenfalls zu einem starken Anstieg des Signals. Dieser Anstieg war allerdings nicht so steil wie bei dem Sensor mit schmalen Streifen mit einer Bestrahlungsfrequenz von $3 \cdot 10^{15} \, \text{n}_{\text{eq}} \, \text{cm}^{-2}$. Das Signal vor
Bestrahlung konnte nicht übertragen werden. Die anderen Sensoren konnten diesen Effekt bei gegebener Bestrahlung und Annealingzeit nicht aufweisen.
Literaturverzeichnis

