Energiekalibration des digitalen Auslesechips \textit{PSI46digV2.1-respin} für das Phase-I-Upgrade des CMS-Pixeldetektors

Roland Koppenhöfer

Energy Calibration of the Digital Readout Chip \textit{PSI46digV2.1-respin} for the Phase I Upgrade of the CMS Pixel Detector

Bachelorarbeit

An der Fakultät für Physik
Institut für Experimentelle Kernphysik (IEKP)

Erstgutachter: Prof. Dr. Ulrich Husemann
Zweitgutachter: Dr. Thomas Weiler

Karlsruhe, 10. August 2015
Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.

Karlsruhe, 10. August 2015

(Roland Koppenhöfer)
Inhaltsverzeichnis

1. **Einleitung** 1

2. **Das CMS-Experiment am LHC** 3
 2.1. Large Hadron Collider 3
 2.2. Das CMS-Experiment 3

3. **Der Pixeldetektor am CMS-Experiment** 7
 3.1. Grundlagen der Halbleiterphysik 7
 3.1.1. Dotierung und pn-Übergang 7
 3.1.2. Nachweis von Teilchen mit Halbleiterdetektoren 8
 3.1.3. Siliziumpixeldetektoren 9
 3.2. Der CMS-Pixeldetektor 10
 3.2.1. Gegenwärtiger Aufbau 10
 3.2.2. Phase-I-Upgrade 10

4. **Messaufbau und Analysemethoden** 13
 4.1. Messaufbau und Messsoftware 13
 4.1.1. Messaufbau an der Röntgenröhre 13
 4.1.2. Messaufbau zum Durchführen von Temperaturzyklen 14
 4.1.3. Messsoftware: pXar 15
 4.2. Elektrische Kalibration von CMS-Pixeldetektoren 15
 4.2.1. Tests zur Überprüfung der Funktionalität 15
 4.2.2. Trim Test 16
 4.2.3. Pulshöhenkalibration 17
 4.3. Aufnahme der Röntgenspektren 19
 4.4. Analysemethoden 20
 4.4.1. Einzelne Gaußverteilung 20
 4.4.2. MoReWeb Algorithmus 23

5. **Messergebnisse** 25
 5.1. Unsicherheiten bei Analyse und Messung 25
 5.1.1. Diskussion von Messunsicherheiten 25
 5.1.2. Diskussion der Ungenauigkeiten in Analysemethoden 26
 5.2. Energiekalibration 26
 5.2.1. Ergebnis und Qualität des linearen Fits 27
 5.2.2. Überprüfung auf Korrelationen 29
 5.3. Abhängigkeit der Peakposition von Photonenrate 29
 5.3.1. Auftragung der Peakposition gegen den Röhrenstrom 31
 5.3.2. Vergleich der Steigungen der Energiekalibrationsgeraden 33
 5.4. Einfluss von Temperaturzyklen auf Funktionalität und mechanische Stabilität von Modulen 34

6. **Zusammenfassung und Diskussion** 39
Inhaltsverzeichnis

Literaturverzeichnis 43

Anhang 45

A. Übersicht über untersuchte Auslesechips 45
B. Analysemethoden zur Peakschwerpunktsbestimmung 46
C. Überprüfung der Qualität der Kalibrationsgeraden 49
1. Einleitung

Der *Large Hadron Collider* (LHC) am Europäischen Kernforschungszentrum in Genf ist ein Teilchenbeschleuniger für Protonen und Schwerionen. Es werden zwei Röhren verwendet, in denen zwei Teilchenstrahlen gegenläufig umlaufen. Die Strahlen können an vier Wechselwirkungspunkten zur Kollision gebracht werden. Bei den Kollisionen entstehende Teilchen werden mit Detektoren nachgewiesen und ausgemessen. Die Designschwerpunktsenergie bei Proton-Proton-Kollisionen beträgt 14 TeV \cite{CERN08}. Der Betrieb des LHC erfolgt in verschiedenen Phasen, die durch Umbauzeiten voneinander getrennt sind. Momentan ist die erste Umbauphase beendet, in der der Beschleuniger auf die zweite dreijährige Laufzeit vorbereitet wurde. Der Beschleuniger wird in der zweiten Messperiode bei etwa doppelter Energie im Vergleich zur ersten Datennahme von 2010 bis 2012 betrieben. Bisher wurden für alle Messungen Luminositäten bis zu $1 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ erwartet. Durch den aktuell abgeschlossenen Umbau können bis zum Ende der zweiten Messperiode Luminositäten von $2 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ erreicht werden \cite{D12}. Um bei diesen Bedingungen weiterhin effizient Messungen durchführen zu können, müssen die Detektoren an die höheren Teilchenraten angepasst werden.

Ziel dieser Arbeit ist es, die Energiekalibration für den digitalen Auslesechip *PSI46digV2.1-respin* durchzuführen und die Abhängigkeit der Resultate von der Rate der einfallenden Teilchen zu untersuchen. Die im Rahmen des Phase-I-Upgrades am CMS-Experiment eingebauten Detektoren werden mit diesem Auslesechip ausgestattet sein. Auch wenn der Pixeldetektor nicht zur Bestimmung der Teilchenenergie verwendet wird, ist die Energiekalibration von Interesse, da über Ladungsschwerpunktsbestimmung in benachbarten Pixeln die räumliche Auflösung erhöht werden kann. Zur Energiekalibration werden im Siliziumsensor bekannte Energiemengen deponiert und die vom Auslesechip zurückgegebenen Signale untersucht. Es wird ein linearer Zusammenhang zwischen ausgelesenen Signal...

Kapitel 5 beinhaltet die Resultate der Energiekalibration und der Untersuchung der Ratenabhängigkeit. Außerdem wird der Einfluss von Temperaturzyklen auf die Funktionalität von Detektormodulen diskutiert.

Abschließend werden die erhaltenen Ergebnisse in Kapitel 6 zusammengefasst und mit den Messergebnissen der vorangegangenen Auslesechipversion PSI46digV2.1 verglichen.
2. Das CMS-Experiment am LHC

2.1. Large Hadron Collider

Der Large Hadron Collider (LHC) ist ein Teilchenbeschleuniger am Europäischen Kernforschungszentrum (Organisation Européen pour la Recherche nucléaire, CERN) in Genf. Mit dem LHC können entweder Protonen oder Schwerionen beschleunigt werden, die in einem Speicherring von etwa 27 km Umfang in zwei Röhren gegenläufig umlaufen. Mit 8,33 T starken supraleitenden Dipolmagneten werden die Teilchen auf ihrer Umlaufbahn gehalten [CER08]. Die Teilchen laufen nicht kontinuierlich um, sondern in Paketen, den sogenannten bunches. An vier Wechselwirkungspunkten werden die zwei Strahlen zur Kollosion gebracht. Die Eigenschaften der dabei entstehenden Teilchen werden mithilfe von Detektoren bestimmt. An den vier Wechselwirkungspunkten sind die Experimente ALICE (A Large Ion Collider Experiment), ATLAS (A Toroidal LHC Apparatus), CMS (Compact Muon Solenoid) und LHCb (LHC-beauty) aufgebaut, ihre Lage am LHC ist in Abbildung 2.1 zu sehen.

Vor dem Einspeisen der Teilchen in den Hauptspeicherring erhalten diese in Vorbeschleunigern eine Energie von 450 GeV. Dabei werden Linearbeschleuniger (LINAC 2 & 3) und Synchrotrone (Proton Synchrotron Booster, Proton Synchrotron, Super Proton Synchrotron) verwendet. Jeder Protonenstrahl kann im Speicherring auf eine maximale Energie von 7 TeV beschleunigt werden. Damit beträgt die Schwerpunktsenergie bei Proton-Proton-Kollisionen bis zu 14 TeV [CER08]. Für Bleiionen beträgt sie bis zu 1150 TeV. Zur Charakterisierung der Strahleigenschaften wird die physikalische Größe Luminosität verwendet. Sie gibt die Anzahl der Teilchenkollisionen pro Zeiteinheit und Fläche an und hängt von der Anzahl der umlaufenden Teilchenpakete ab, deren Umlauffrequenz, der Anzahl der Teilchen pro Paket und dem Strahlquerschnitt am Wechselwirkungspunkt. Bei den bisher durchgeführten Messungen am LHC wurden Luminositäten bis zu $\mathcal{L} = 1 \cdot 10^{34} \text{cm}^{-2} \text{s}^{-1}$ erwartet [D+12], dieser Wert wurde für die nächste Messperiode auf $\mathcal{L} = 2 \cdot 10^{34} \text{cm}^{-2} \text{s}^{-1}$ erhöht (vgl. Abschnitt 3.2.2).

2.2. Das CMS-Experiment

Das Compact Muon Solenoid-Experiment (CMS-Experiment) am LHC ist ein 21,6 m langer Detektor mit einem Durchmesser von 14,6 m [Col08] und nach ATLAS das größte Experiment am CERN. CMS wurde gebaut, um die Existenz und Eigenschaften des Higgs-Teilchens zu untersuchen. Weitere Aufgaben bilden die Suche nach Physik jenseits des
Standardmodells, zum Beispiel Supersymmetrie, und die Untersuchung der Prozesse bei der Kollision schwerer Ionen.

Die Komponenten des Detektors sind zylinderförmig um das Strahlrohr angeordnet (vgl. Abb. 2.2). Von innen nach außen sind ein Spurdetektor, ein elektromagnetisches und hadronisches Kalorimeter, eine supraleitende solenoidale Spule, ein eisernes Rückführjoch und Myonenkammern eingebaut.

Die bei einer Kollision entstandenen Teilchen durchfliegen zuerst den Spurdetektor. Sein Durchmesser beträgt 2,5 m und er ist 5,8 m lang. Im Siliziumpixel- und Siliziumstreifendetektor werden Spurpunkte der durchquerenden geladenen Teilchen aufgenommen. Das von der Spule erzeugte Magnetfeld ist im gesamten Spurdetektorvolumen homogen, sodass die in Folge der Lorentzkraft gekrümmten Bahnen Informationen über die Teilchenimpulse liefern. Der Aufbau des Pixeldetektors wird ausführlich in Kapitel 3 beschrieben.

Die Energie von Hadronen (zum Beispiel Protonen, Neutronen oder Pionen) wird im hadronischen Kalorimeter bestimmt, das an das elektromagnetische angrenzt. Auch hier kommt es bei der Wechselwirkung der Teilchen mit dem Detektormaterial zur Schauerbildung, die Energieabgabe ist im Vergleich zur elektromagnetischen Wechselwirkung um einiges komplizierter. Das Kalorimeter ist aus abwechselnden Schichten aus Messing und organischem Szintillatormaterial aufgebaut.

Die supraleitende solenoidale Spule erzeugt ein 3,8 T starkes Magnetfeld und besitzt einen Durchmesser von 6 m. Sie wird bei 4,6 K betrieben. Ihre Wicklung besteht aus Niob-Titan (NbTi), das in vier Schichten angeordnet ist. Ein starkes Magnetfeld wird benötigt, um bei hohen Teilchenimpulsen gute Impulsauflösungen im Spurdetektor zu erhalten. Um das Magnetfeld der Spule zu schließen, wird ein Rückführjoch aus Eisen verwendet.

2.2. Das CMS-Experiment

Abbildung 2.1.: Übersicht über Vorbeschleuniger, Large Hadron Collider und die vier großen Experimente am LHC. [CER08]

Abbildung 2.2.: Schnitt durch den CMS-Detektor senkrecht zum Strahlrohr mit eingezeichneter Flugstrecke und Wechselwirkung ausgewählter Teilchen. Die Komponenten von links (innen) nach rechts (außen) sind: Spurdetektor aus Siliziumdetektoren, elektromagnetisches und hadronisches Kalorimeter, supraleitende Spule, Rückführjoch des Magnetfelds mit Myonenkammern. [Bar10]
3. Der Pixeldetektor am CMS-Experiment

3.1. Grundlagen der Halbleiterphysik

Bei Isolatoren ist die Bandlücke so groß, dass Elektronen nicht durch thermische Anregung aus dem Valenzband angehoben werden können. Das Leitungsband ist komplett leer. In Leitern überschneiden sich Valenz- und Leitungsband. Ist die Bandlücke vorhanden, aber nicht so groß wie bei Isolatoren, spricht man von Halbleitern. Am absoluten Nullpunkt sind alle Elektronen im Valenzband lokalisiert, der Halbleiter ist isolierend. Mit steigenden Temperaturen steigt die Wahrscheinlichkeit, dass Elektronen durch thermische Anregung die Bandlücke überwinden können, das Leitungsband ist teilweise gefüllt, die elektrische Leitfähigkeit steigt.

3.1.1. Dotierung und pn-Übergang

Zur Verbesserung der Leitfähigkeit von Halbleitern können gezielt Fremdatome in die Kristallsstruktur eingebracht werden, man spricht dabei von Dotieren. Siliziumatome besitzen vier Valenzelektronen, die in einem reinen Siliziumkristall alle für Gitterbindungen verwendet werden. Wird ein Siliziumatom durch ein Atom mit mehr Valenzelektronen ersetzt (beispielsweise durch Arsen aus der fünften Hauptgruppe des Periodensystems der Elemente), so werden vier Valenzelektronen weiterhin für Gitterbindungen zu den benachbarten
3. Der Pixeldetektor am CMS-Experiment

Abbildung 3.1.: Links: Ein n-dotierter Halbleiter mit frei beweglichen Elektronen (schwarze Kreise) und ein p-dotierter Halbleiter mit frei beweglichen positiv geladenen Löchern (nicht gefüllte Kreise)

Rechts: pn-Übergang mit Verarmungszone an freien Ladungsträgern um die Grenzschicht herum. [Lut07]

3.1.2. Nachweis von Teilchen mit Halbleiterdetektoren

In Halbleiterdetektoren sorgt die vom Teilchen abgegebene Energie dafür, dass Elektronen aus dem Valenzband ins Leitungsband angehoben werden und so bewegliche Elektron-Loch-Paare entstehen. Dafür muss das Teilchen im Mittel eine Energie von 3,6 eV abgeben [Har09]. Durch Anlegen einer Spannung an den Halbleiter driften die Elektronen und Ionenrümpfe zum jeweiligen Pol und es kann ein Strom gemessen werden. Dieser ist proportional zur Anzahl der beim Teilchendurchgang erzeugten Elektron-Loch-Paare. Da in undotierten Halbleitern zum Beispiel durch thermische Anregung zu viele freie Ladungsträger vorhanden sind, als dass man die durch Teilcheneinfall zusätzlich entstandenen Elektron-Loch-Paare leicht im Signal erkennen könnte, werden Halbleiterdetektoren als...
3.1 Grundlagen der Halbleiterphysik

a) b) c)

Abbildung 3.2.: Schematischer Aufbau von Halbleiterdetektoren für zwei Geometrien: a) einseitiger Siliziumstreifendetektor, b) Siliziumpixeldetektor; die hier angegebenen Dotierungen entsprechen den am CMS-Experiment verwendeten. [Kei01]

3.1.3. Siliziumpixeldetektoren

Typinversion eine zufriedenstellende Ortsmessung möglich, da sich der pn-Übergang nun zwischen n-dotierten Pixeln und p-dotierter Siliziumschicht befindet und die Verarmungszone von dort aus gebildet wird.

3.2. Der CMS-Pixeldetektor

3.2.1. Gegenwärtiger Aufbau

Mit den fertig produzierten Modulen wird der CMS-Pixeldetektor aufgebaut, der aus zwei Teilen besteht. Der BPIX-Detektor (*barrel pixel detector*) besteht aus drei zylindrischen Schichten von Modulen, die in Abständen von 4,4 cm, 7,5 cm und 10,2 cm um die Mitte des Strahlrohres angeordnet sind. Jede der Schichten ist 53 cm lang [Col08]. An den beiden Enden des BPIX-Detektors befinden sich je zwei Endkappen, die den FPIX-Detektor (*forward pixel detector*) bilden. Die dort verwendeten Module unterscheiden sich im Aufbau von denen im BPIX-Detektor.

Mit dieser Geometrie des Pixeldetektors ist eine Impulsmessung von geladenen Teilchen bis zu einer Pseudorapidität\(^1\) von \(|\eta| = 2,5\) möglich. Für jeden Teilchendurchgang können drei Spurpunkte aufgenommen werden. Durch Auslesen der analogen Pulshöhen können über Ladungsschwerpunktsbestimmung (vgl. Abschnitt 3.1.3) Ortsauflösungen von etwa 15µm bis 20µm erreicht werden [Col08]. Insgesamt besitzt der Pixeldetektor 66 Millionen Pixel mit einer Gesamtfläche von etwas über 1 m\(^2\) [Col08].

3.2.2. Phase-I-Upgrade

Der Betrieb des *Large Hadron Collider* (LHC) in Genf verläuft in mehreren Phasen, die durch ausgedehnte Umbauzeiten (*long shutdown*, LS) voneinander getrennt sind. In diesem Jahr wurde der erste Umbau beendet und die zweite dreijährige Messzeit des LHC

\(^1\)In der Teilchenphysik verwendete Größe zur Angabe des Winkels \(\vartheta\) zur Strahlachse: \(\eta = - \ln \left(\tan \left(\frac{\vartheta}{2}\right)\right)\).
Abbildung 3.3.: Einzelkomponenten der Module für das Phase-I-Upgrade des CMS-Pixeldetektors; von oben nach unten: Signal- und Stromkabel, High Density Interconnect (HDI) mit Token Bit Manager (TBM) in der Mitte, Siliziumpixelsensor, 16 Auslesechips (ROC) und zwei SiN-Streifen zur mechanischen Fixierung (base strips). [Erd15]
Abbildung 3.4.: Veränderungen am CMS-Pixeldetektor: das linke Bild vergleicht die Anordnung der drei Detektorlagen vor dem Upgrade mit der geplanten Anordnung der vier Detektorlagen danach; das rechte Bild zeigt die Anordnung der BPIX und FPIX Detektorlagen nach dem Phase-I-Upgrade.

hat begonnen. Bis zum Jahr 2018, wenn die nächste größere Unterbrechung (LS 2) geplant ist, wird die Luminosität den Wert von $2 \cdot 10^{34} \text{cm}^{-2} \text{s}^{-1}$ erreichen. Eine höhere Luminosität bedeutet mehr Teilchenkollisionen in derselben Zeiteinheit und Fläche. Der in den Modulen verwendete analoge Auslesechip besitzt für diese Teilchenraten einen zu kleinen Speicher. Beobachtete Ereignisse werden zwischengespeichert und ausgelesen, wenn das Ereignis innerhalb einer festgelegten Zeitspanne als interessant eingestuft wird. Diese Information wird über das Level-1-Triggersystem übertragen. Ist der Speicher vor Ablauf der Triggerwartezeit voll und ein neues Signal soll gespeichert werden, wird der Speicherinhalt überschrieben. So gehen im analogen Auslesechip bei einer Luminosität von $2 \cdot 10^{34} \text{cm}^{-2} \text{s}^{-1}$ und einem Abstand der Teilchenpakete von 25 ns etwa 16% der Daten verloren. Aus diesem Grund werden im Winter 2016/2017 neue Module im Pixeldetektor eingebaut, die einen digitalen Auslesechip verwenden. Dessen Speicher ist größer und durch den Wechsel auf digitale Auslese können in derselben Zeit mehr Daten mit der bestehenden Infrastruktur übertragen werden.

Mit diesen Veränderungen wird es möglich sein, auch bei Luminositäten von $2 \cdot 10^{34} \text{cm}^{-2} \text{s}^{-1}$ die Teilchendurchgänge effizient zu vermessen. Statt bisher drei Spurpunkten in unmittelbarer Umgebung des Wechselwirkungspunktes wird der neue Detektor vier Spurpunkte über einen großen Raumwinkelbereich aufnehmen können (vgl. hierzu ebenfalls Abbildung 3.4).
4. Messaufbau und Analysemethoden

In diesem Kapitel werden die dieser Arbeit zugrunde liegenden Mess- und Analysemetho-
den vorgestellt. Neben den experimentellen Aufbauten zur Spektrenaufnahme und Küh-
lung der Einzelchipaufbauten und Module werden die wichtigsten Funktionen der Mess-
software pXar behandelt. Der letzte Abschnitt diskutiert das Vorgehen zur Analyse der
erhaltenen Röntgenspektren.

4.1. Messaufbau und Messsoftware

Zur Kalibrierung der vom Auslesechip gemessenen Ladung und damit der deponierten
Energie im Sensor werden Einzelchipaufbauten und Module verwendet. Ein Einzelchi-
apaufbau besteht aus einem Siliziumpixelsensor, der über Lotkugeln mit einem einzelnen
Auslesechip leitend verbunden ist. Diese Verbindungsart wird bump bonding genannt. Statt
eines Token Bit Manager und eines High Density Interconnect wie bei Modulen besitzen
Einzelchipaufbauten eine anders gestaltete Platine (das sogenannte Printed Circuit Board,
PCB). Einzelchipaufbauten können im Vergleich zu vollen Modulen schneller elektrisch
kalibriert werden. Allerdings kann bei jeder Messung nur das Verhalten eines einzelnen
Auslesechips untersucht werden. Bei Modulen werden 16 Auslesechips parallel betrieben.

Dieser Arbeit liegen Messungen an Einzelchipaufbauten und Modulen mit dem digitalen
Auslesechip PSI46digV2.1-respin zu Grunde. Eine Übersicht über die verwendeten Mo-
dule und Einzelchipaufbauten findet sich in Tabelle A.1 im Anhang. Dort sind auch die
durchgeführten Messungen aufgelistet.

4.1.1. Messaufbau an der Röntgenröhre

Zur Energiekalibrierung des digitalen Auslesechips wird charakteristische Röntgenstrah-
lung verwendet. Sie entsteht, indem Materialien elektronisch angeregt werden und an-
schließend die charakteristische Strahlung abgeben. Zur Anregung der Materialien wird
eine Röntgenröhre des Typs ISO-DEBYEFLEX 3003 verwendet. Sie erzeugt ein kontinu-
ierliches Röntgenspektrum. Die Röhre unterstützt Beschleunigungsspannungen von 2 keV
bis 60 keV und Ströme von 2 mA bis 33 mA. Die Materialien werden in den direkten Strahl
der Röntgenröhre eingebracht.

Im Bild des Bohrschen Atommodells regen die Photonen der Röntgenröhre in den Mate-
rialien Hüllenelektronen an, sodass diese in höhere Energieniveaus angehoben werden oder
das Atom sogar verlassen. Die in den ursprünglichen Energieniveaus fehlenden Elektronen
14 4. Messaufbau und Analysemethoden

Abbildung 4.1.: Verwendeter Messaufbau zur Energiekalibration des digitalen Auslesechips: Eine Röntgenröhre (X-ray tube) erzeugt ein Röntgenspektrum, das Elektronen im Target anregt (platziert auf target holder); die entstandene charakteristische Röntgenstrahlung wird mit Einzelchipaufbauten und Modulen detektiert (sensor), deren Betriebstemperatur mithilfe eines Peltier-Elements und eines Lüfters (cooling) stabilisiert wird. [Fre13]

werden durch Hüllenelektronen aus höheren Energieniveaus besetzt. Bei diesen Übergängen wird die Energiedifferenz der Niveaus in Form von elektromagnetischer Strahlung abgegeben. So entsteht ein Spektrum mit charakteristischen Maxima bei festen, berechenbaren Energien, den sogenannten Röntgenlinien (K α, K β, ...). Die bestrahlten Materialien werden im Folgenden als Targets bezeichnet.

Die auszumessenden Einzelchipaufbauten und Module werden so befestigt, dass sie die vom Target erzeugte Strahlung detektieren. Mithilfe eines Peltier-Elements und eines Lüfters werden sie auf konstanter Temperatur gehalten, die über eingebaute Temperatursensoren gemessen wird. Mit diesem Aufbau werden je nach Umgebungstemperatur Werte bis zu −35 °C erreicht. Ein Foto des experimentellen Aufbaus in der Röntgenröhre ist in Abbildung 4.1 dargestellt.

Als Targets stehen Eisen (Fe), Kupfer (Cu), Zink (Zn), Molybdän (Mo), Silber (Ag), Indium (In), Zinn (Sn) und Neodym (Nd) zur Verfügung.

4.1.2. Messaufbau zum Durchführen von Temperaturzyklen

Die am CMS-Experiment eingebauten Module werden beispielsweise bei einem Umbau oder einer Reparatur von ihrer Betriebstemperatur auf Raumtemperatur erwärmt und nach Abschluss der Arbeiten wieder abgekühlt. Durch diese Temperaturänderungen sollte
die Funktionalität der Module möglichst nicht beeinflusst werden. Daher wird im Rahmen dieser Arbeit überprüft, in wieweit die mechanische Beanspruchung durch mehrere Temperaturzyklen zwischen -20°C und $+20^\circ\text{C}$ Einflüsse auf die Qualität der Lotkugelverbindungen hat. Die Zyklen werden am oben beschriebenen experimentellen Aufbau durchgeführt. Vor Beginn und nach Ende der Temperaturzyklen werden die Module jeweils an der Röntgenröhre auf defekte Pixel untersucht. Die Ergebnisse werden in Abschnitt 5.4 präsentiert.

4.1.3. Messsoftware: pXar

Gemessen wird mit der Software pXar1. Das in der Programmiersprache C++ geschriebene Programm beinhaltet Routinen sowohl für die elektrische Kalibration, als auch für die Aufnahme der Spektren charakteristischer Röntgenstrahlung. Alle in dieser Arbeit verwendeten Messungen sind mit diesem Messprogramm durchgeführt worden. Da die Software im Laufe des Entstehens dieser Arbeit ständig weiter entwickelt wurde (und zum Zeitpunkt der Abgabe immer noch wird), sind für die Datennahme verschiedene Programmversionen verwendet worden. Die in dieser Arbeit verwendeten Messdaten wurden mit den Versionen 1.7.3 und 2.2.4 erzeugt. Die für die einzelnen Messungen verwendeten Versionen können ebenfalls in Tabelle A.1 nachgelesen werden.

Die Software auf dem Messrechner ist über USB 2.0 mit einem digitalen Testboard verbunden. Das Testboard ist über ein 68-poliges SCSI-Kabel und einen separaten Adapter mit den Auslesechips verbunden. Neben der Datenübertragung regelt das Testboard auch die Spannungsversorgung der Auslesechips.

4.2. Elektrische Kalibration von CMS-Pixeldetektoren

4.2.1. Tests zur Überprüfung der Funktionalität

Zu Beginn der elektrischen Kalibration wird getestet, ob der Detektor funktionsfähig ist. Beim Pretest werden die Konfigurationsdateien für die verwendete Hardware eingele sen. Es wird überprüft, ob die DAC-Parameter in den folgenden Tests eingestellt werden können. Die globalen Variablen I_{ana} (Analogstrom), CalDel (Zeitverzögerung des zur Kalibrierungssignals) und VthrComp (vorgegebene Ladungsschwelle, ab der ein Pixel antwortet, vgl. Abschnitt 4.2.2) werden gesetzt.

Als nächstes wird im Pixel Alive Test überprüft, ob die einzelnen Pixel auf Kalibrationssignale reagieren. Der Mask Test kontrolliert, ob das mask bit jedes Pixels gesetzt werden kann. Dieses Bit kann das Auslesen eines Pixels verhindern, was zum Beispiel bei rauschenden Pixeln benötigt wird. Mit einem Kalibrationspuls beim ausgeschalteten Pixel kann über das Signal festgestellt werden, ob das Setzen des mask bits erfolgreich war. Der

4. Messaufbau und Analysemethoden

Abbildung 4.2.: Schematischer Aufbau der im Bump Bond Test benötigten Komponenten zum Einspeisen eines Kalibrationspulses in den Sensor: Der Puls wird über Schalter 2 (*switch 2*) und den Luftspalt in den Sensor eingebracht; das Signal wird über die Lotkugel (*bump bond*) ausgelesen. [Tru08]

anschließend durchgeführte **Address Decoding Test** prüft, ob die Adresse jedes Pixels richtig aufgelöst werden kann.

4.2.2. Trim Test

Die Schwelle jedes Pixels kann mithilfe von vier *trim bits* fein justiert werden. Im **Trim Bit Test** wird überprüft, ob alle *trim bits* gesetzt werden können. Der **Trim Test** setzt die *trim bits* der einzelnen Pixel so, dass sich eine einheitliche Schwelle für den Einzelchip ergibt. Die einzustellende Schwelle wird durch den Benutzer in Vcal-Einheiten vorgegeben.
4.2. Elektrische Kalibrierung von CMS-Pixeldetektoren

Abbildung 4.3.: Schwellenverteilung der Pixel des Ausleseschips 7 auf Modul M4562. Das Modul wurde im Trim Test auf eine Schwelle von 35 Vcal getrimmt.

4.2.3. Pulshöhenkalibration

Um eine bessere Ortsauflösung zu erhalten, müssen die ausgelesenen Vcal-Werte auf die im Detektor deponierte Ladung kalibriert werden. Dazu wird die Pulshöhenkalibrierung (Pulse Height Calibration) durchgeführt. In jedes Pixel werden einzeln Vcal-Kalibrationspulse mit ansteigender Stärke eingespeist und die Signale ausgelesen. Es wird ein linearer Zusammenhang erwartet. Je nach Softwareversion werden zwei verschiedene Funktionen an die Messdaten angepasst. In pXar 1.7.3 wird die Funktion

\[y = p_3 + p_2 \cdot \tanh(p_0 \cdot x - p_1) \] \hspace{1cm} (4.1)

angespasst, in der Version 2.2.4 die Funktion

\[y = p_3 \cdot \left(\text{erf} \left(\frac{x - p_0}{p_1} \right) + p_2 \right). \] \hspace{1cm} (4.2)
Abbildung 4.4.: Von der Messsoftware *pXar* aufgenommene Messdaten während der Pulshöhenkalibration für das Pixel in Spalte 5 und Reihe 49 auf Modul M4553. Es werden Kalibrationspulsen mit ansteigender Stärke eingespeist und das Signal ausgelesen.

Dabei bezeichnet tanh den hyperbolischen Tangens und erf die Gaußsche Fehlerfunktion. In *pXar* nennen sich die beiden Tests der Pulshöhenkalibration *Pulse Height Optimization* und *Gain Pedestal*.

Um eine Energie auf die Vcal-Werte zu kalibrieren wird eine externe Quelle benötigt. Dies ist Thema dieser Arbeit, die Ergebnisse werden in Kapitel 5.2 präsentiert.
4.3. Aufnahme der Röntgenspektren

Um die Einfüsse der Vielfachstreuung zu minimieren, wird um die Halterung der Targets eine Abschirmung aus Aluminium aufgebaut. Diese ist in Abbildung 4.1 zu sehen. Der direkte Strahl der Röntgenröhre trifft durch ein Loch in der Decke der Abschirmung auf das Targetmaterial, der Detektor wird vor der Öffnung an der rechten Seite der Abschirmung platziert. Auch in der Abbildung komplett offene Vorderseite wird während der Messungen verschlossen. Das in Abbildung 4.5 dargestellte Spektrum wurde mit diesem experimentellen Aufbau gemessen.

Zusätzlich erzeugt der Xray Test sogenannte Hitmaps, in die die Gesamtzahl der Ereignisse eingetragen wird, die von jedem Pixel im Laufe der Messzeit detektiert wurde.

4.4. Analysemethoden

In diesem Abschnitt werden die Analysemethoden erläutert, die zur Bestimmung des Peak schwerpunktes der Röntgenspektren verwendet werden.

4.4.1. Einzelne Gaußverteilung

2Die für die Auswertung verwendeten Programme finden sich unter https://github.com/EKPCN/AnalyzingGaussSpectra
4.4. Analysemethoeden

Abbildung 4.6.: Veränderungen im Röntgenspektrum von Silber bei Datennahme ohne zusätzliche Abschirmung und mit zusätzlicher Abschirmung aus Aluminium. Zusätzlich wird der Einfluss der Energieabgabe eines Photons in mehreren benachbarten Pixeln (Bildung von Clustern) auf das Röntgenspektrum dargestellt.
Abbildung 4.7.: Röntgenspektrum eines Permanentmagneten aus einer Neodym-Eisen-Bor Legierung; der niederenergetische deutlich ausgeprägte Peak stammt von Eisen, der schwach ausgeprägte Peak bei etwa 220 Vcal stammt von Neodym; die Funktionsanpassungen werden um den Neodym-Peak durchgeführt.

4.4.2. MoReWeb Algorithmus

Der dabei verwendete Algorithmus wird in dieser Arbeit zusätzlich zur Anpassung einer einzelnen Normalverteilung angewandt. Die zugehörigen Funktionen sind ebenfalls in dem im letzten Abschnitt erwähnten \textit{C++}/\textit{ROOT}-basierten Auswerteprogramm implementiert. An die Spektren passt MoReWeb eine Funktion in zwei Schritten an. Im ersten Schritt wird eine Normalverteilung der Form

$$N(Q) = [0] \cdot \exp \left(\frac{-1}{2} \cdot \frac{(Q - [1])^2}{[2]^2} \right)$$

(4.3)

$$N(Q) = ([0] + [1] \cdot Q + \text{gaus}(2) + \text{gaus}(5)) \cdot \left(1 + \text{erf} \left(\frac{Q - [8]}{[9]}\right)\right)$$

(4.4)

mit \text{gaus}(i) = [i] \cdot \exp \left(-\frac{1}{2} \cdot \frac{(Q - [i + 1])^2}{[i + 2]^2} \right). \tag{4.5}

5. Messergebnisse

5.1. Unsicherheiten bei Analyse und Messung

Inhalt dieses Abschnittes ist die Quantifizierung von Unsicherheiten, die während der Messungen und Analysen auftreten können. Eine genaue Kenntnis dieser Größen ist für die richtige Einordnung der Resultate notwendig.

5.1.1. Diskussion von Messunsicherheiten

Die mit \textit{pXar} eingestellten und aufgenommenen Rohdaten (DAC-Parameter und Spektren) sind nur innerhalb gewisser Grenzen reproduzierbar und damit aussagekräftig. Im Laufe einer Messung spielen dabei verschiedene Faktoren eine Rolle. Eine ausführliche Diskussion der Einflüsse zahlreicher Faktoren findet sich in \cite{Fre13}. An dieser Stelle werden nur zwei Faktoren diskutiert, die für die im Rahmen dieser Arbeit durchgeführten Messungen wichtig sind.

Wie bereits in Abschnitt 4.2 erwähnt, sollten elektrische Kalibration und Aufnahme der Spektren bei gleicher Temperatur durchgeführt werden, da das Messsignal temperaturabhängig ist. Um eine temperaturbedingte Verschiebung der Peakposition zu verhindern, werden die Einzelchips und Module im Messaufbau an der Röntgenröhre temperaturstabilisiert betrieben. Zusätzlich wird die elektrische Kalibration oder zumindest die Pulshöhenkalibration unmittelbar vor Aufnahme der Spektren durchgeführt. Die am Programm zur Temperatursteuerung ablesbaren Schwankungen um die Solltemperatur betrugen etwa 0,2°C. Nach \cite{Ren15} ergibt sich für den Auslesechip \textit{PSI46digV2.1} eine Verschiebung der beobachtbaren Maxima um $-5,9 \text{ Vcal}/\degree\text{C}$. Dieser Wert wird in dieser Arbeit für den Auslesechip \textit{PSI46digV2.1-respin} übernommen, um die temperaturbedingte Unsicherheit auf die gemessenen Peakpositionen zu berechnen. Sie beträgt damit

\[
\Delta_{\text{temp}} = 0,2 \degree\text{C} \cdot 5,9 \text{ Vcal}/\degree\text{C} = 1,2 \text{ Vcal}. \tag{5.1}
\]
5.1.2. Diskussion der Ungenauigkeiten in Analysemethoden

Ein weiterer Faktor, der die Genauigkeit der Messergebnisse beeinflusst, entsteht während der Analyse. In [Fre13] wurde gezeigt, dass beim Anpassen einer Gaußfunktion an die Spektren durch ungenügende Parameterwahl der Fit vom gemessenen Spektrum abweichen kann. Die Abweichungen der ermittelten Peakpositionen untereinander werden als 2 Vcal angegeben [Fre13]. Das in dieser Arbeit zur Auswertung verwendete Programm wurde in seiner Funktionsweise in Abschnitt 4.4 beschrieben. Da die Funktionsanpassung um das Maximum des Histogramms durchgeführt wird und die Intervallgrenzen empirisch so gewählt sind, dass die erhaltenen Funktionen gut zum Spektrum passen, wird die Unsicherheit auf die Peakposition für die Anpassung einer einzelnen Gaußfunktion (Single Gaussian, SG) als

\[\Delta_{\text{Analyse}}^{\text{SG}} = 1 \text{ Vcal} \]

Mit dem Ergebnis des letzten Abschnittes erhält man die systematischen Unsicherheiten auf die Peakpositionen. Für die Anpassung einer Normalverteilung ergibt sich mithilfe der Gaußschen Fehlerfortpflanzung

\[\Delta_{\text{Peak}}^{\text{SG}} = \sqrt{\Delta_{\text{temp}}^2 + \left(\Delta_{\text{Analyse}}^{\text{SG}}\right)^2} = 1,5 \text{ Vcal.} \]

Gaußsche Fehlerfortpflanzung darf verwendet werden, da die beiden Unsicherheiten nicht korreliert sind. Für den MoReWeb-Algorithmus ist lediglich die temperaturbedingte Unsicherheit von Bedeutung

\[\Delta_{\text{Peak}}^{\text{MW}} = \Delta_{\text{temp}} = 1,2 \text{ Vcal.} \]

5.2. Energiekalibration

\[n_{\text{e}^{-}} = p_0 + p_1 \cdot Q \]

durchgeführt, wobei \(n_{\text{e}^{-}} \) die theoretisch erwartete Zahl an erzeugten Elektronen angibt und \(Q \) die Ladung in Vcal-Einheiten. Als Unsicherheiten auf die Peakpositionen werden die in Abschnitt 5.1 diskutierten Fehler \(\Delta_{\text{Peak}}^{(i)} \) angenommen. Die Unsicherheiten der Kα-Energien sind in Tabelle 5.1 angegeben.
5.2. Energiekalibration

Tabelle 5.1.: Theoretisch bestimmte K_α-Übergangsenergien und Anzahl der in Silizium erzeugten Elektronen bei vollständiger Energiedeposition [NIS09]. Die Anzahl der Elektronen berechnet sich über $n_e = E_{K_\alpha}/3.6\,\text{eV}$ [Har09].

<table>
<thead>
<tr>
<th>Element</th>
<th>E_{K_α} (eV)</th>
<th>n_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>6403,13 ± 0,43</td>
<td>1778</td>
</tr>
<tr>
<td>Cu</td>
<td>8048,11 ± 0,45</td>
<td>2235</td>
</tr>
<tr>
<td>Zn</td>
<td>8639,10 ± 0,45</td>
<td>2399</td>
</tr>
<tr>
<td>Mo</td>
<td>17 479,10 ± 0,55</td>
<td>4855</td>
</tr>
<tr>
<td>Ag</td>
<td>22 162,99 ± 0,66</td>
<td>6156</td>
</tr>
<tr>
<td>In</td>
<td>24 209,78 ± 0,69</td>
<td>6724</td>
</tr>
<tr>
<td>Sn</td>
<td>25 271,34 ± 0,72</td>
<td>7019</td>
</tr>
<tr>
<td>Nd</td>
<td>37 361,40 ± 0,10</td>
<td>10 378</td>
</tr>
</tbody>
</table>

5.2.1. Ergebnis und Qualität des linearen Fits

Die Ergebnisse dieses Abschnitts resultieren aus Spektren, die alle bei einem konstanten Röntgenröhrenstrom von 30 mA aufgenommen wurden. Damit wird eine Beeinflussung des Ergebnisses durch verschiedene Röhrenströme ausgeschlossen. Das Verhalten des Auslesechips bei variierenden Röhrenströmen wird in Kapitel 5.3 untersucht.

$$\langle p_1^{SG}\rangle = 47,73\,\text{e}^-/\text{Vcal} \quad \text{RMS}^{SG} = 2,06\,\text{e}^-/\text{Vcal} \quad (5.6)$$
$$\langle p_1^{MW}\rangle = 47,46\,\text{e}^-/\text{Vcal} \quad \text{RMS}^{MW} = 1,94\,\text{e}^-/\text{Vcal}. \quad (5.7)$$

Die Standardabweichungen der arithmetischen Mittel berechnen sich mit $n = 226$ zu

$$\sigma(\langle p_1^{SG}\rangle) = \frac{\text{RMS}^{SG}}{\sqrt{n}} = 0,14\,\text{e}^-/\text{Vcal} \quad (5.8)$$
$$\sigma(\langle p_1^{MW}\rangle) = \frac{\text{RMS}^{MW}}{\sqrt{n}} = 0,13\,\text{e}^-/\text{Vcal}. \quad (5.9)$$

Die mittlere Steigung, die mithilfe des MoReWeb-Algorithmus bestimmt wurde, ist um etwa 0,3 Vcal kleiner als der daraus der Anpassung der Normalverteilung erhaltene Wert. Beide Werte liegen nicht innerhalb der Standardabweichung des jeweils anderen. Die prozentuale Abweichung von $\langle p_1^{SG}\rangle$ zu $\langle p_1^{MW}\rangle$ ist mit 0,6 % aber relativ gering.

Um die Qualität der Analyse zu überprüfen, wird ein Pearsonischer χ^2-Test durchgeführt. Aus den bei der linearen Regression ermittelten Werten für χ^2 und der Anzahl der Freiheitsgrade werden die Wahrscheinlichkeiten berechnet, dass ein zufällig beobachteter χ^2-Wert größer als der χ^2-Wert der Geradenanpassung ist. Die erhaltenen Wahrscheinlichkeiten...
Abbildung 5.1.: Energiekalibrationsgerade des Auslesechips 9 auf Modul M4558 bei einem Röhrenstrom von 30 mA. Dargestellt sind die Ergebnisse beider Analysemethoden (Anpassen einer einzelnen Gaußfunktion und des MoReWeb-Algorithmus).

Abbildung 5.2.: Histogramm aller 226 berechneten Steigungen der Kalibrationsgeraden bei einem Röntgenröhrtenstrom von 30 mA nach Analyse der Spektren mithilfe einer Gaußfunktion und des MoReWeb-Algorithmus.
werden in ein Histogramm eingetragen. Bei guter Abschätzung der Fehler und gutem linearen Verhalten der Messpunkte sollte sich eine nahezu homogene Verteilung ergeben, die keine Maxima bei null oder eins aufweist.

5.2.2. Überprüfung auf Korrelationen

Mit den erhaltenen Daten (Kalibrationsgeradensteigung, \(\chi^2 \)-Wert und Position des Auslesechips auf dem Modul) kann zusätzlich überprüft werden, ob sich diese Größen gegenseitig beeinflussen. Dazu werden die Korrelationskoeffizienten aller drei möglichen Verteilungen bestimmt. Die erhaltenen Verteilungen sind in Abbildung 5.3 dargestellt.

Der Korrelationskoeffizient zwischen Steigung und \(\chi^2 \)-Wert beträgt \(k_{px_\chi^2} = -0,22 \). Es existiert damit kein Zusammenhang zwischen dem ermittelten Wert der Steigung und der Qualität des linearen Fits. Die ermittelten unterschiedlich großen Steigungen resultieren damit aus den spezifischen Eigenschaften der jeweiligen Auslesechips und nicht aus Ungenaugkeiten der Messung. Dieses Ergebnis deckt sich mit denen der Wahrscheinlichkeitsverteilungen im Abschnitt 5.2.1.

Die Überprüfung der Korrelation zwischen Position \(n \) des Auslesechips auf dem Modul und der ermittelten Kalibrationsgeradensteigung sowie zwischen Position und \(\chi^2 \)-Wert liefert vom Betrag noch kleinere Korrelationskoeffizienten \(k_{np} = 0,05 \) und \(k_{n\chi^2} = 0,02 \). Dies entspricht der Erwartung, da bei korrekter Fertigung der Module die Position der Auslesechips keinen Einfluss auf deren Verhalten haben sollte. Die untersuchten Module wurden alle am Karlsruher Institut für Technologie produziert, das dort verwendete Herstellungsverfahren liefert (zumindest unter Gesichtspunkten dieses Tests) gut funktionierende Module.

5.3. Abhängigkeit der Peakposition von Photonenrate

Abbildung 5.3.: Untersuchung der Korrelation zwischen Kalibrationsgeradensteigung und χ^2-Wert (oben), zwischen Position des Auslesechips auf dem Modul und Kalibrationsgeradensteigung (Mitte) und zwischen Position des Auslesechips und χ^2-Wert (unten). Der jeweilige Korrelationskoeffizienten k ist eingetragen.
5.3. Abhängigkeit der Peakposition von Photonenrate

Tabelle 5.2.: Berechnete Photonenraten für verschiedene Ströme I der Röntgenröhre und Targets, aufgenommen mit Modul M4550, Auslesechip 0.

<table>
<thead>
<tr>
<th>Target</th>
<th>I (mA)</th>
<th>R (MHz cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>30</td>
<td>0.43</td>
</tr>
<tr>
<td>Cu</td>
<td>30</td>
<td>1.59</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>1.61</td>
</tr>
<tr>
<td>Mo</td>
<td>30</td>
<td>1.89</td>
</tr>
<tr>
<td>Ag</td>
<td>30</td>
<td>1.24</td>
</tr>
<tr>
<td>In</td>
<td>30</td>
<td>1.00</td>
</tr>
<tr>
<td>Sn</td>
<td>30</td>
<td>0.87</td>
</tr>
<tr>
<td>Ag</td>
<td>6</td>
<td>0.24</td>
</tr>
<tr>
<td>Ag</td>
<td>10</td>
<td>0.41</td>
</tr>
<tr>
<td>Ag</td>
<td>20</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Zur Überprüfung der Erwartung werden die Peakpositionen Q_{Peak} der bei verschiedenen Röhrenströmen I aufgenommenen Spektren gegen den verwendeten Strom aufgetragen. Die Steigung einer linearen Regression der Form

$$Q_{\text{Peak}} = p_0 + p_1 \cdot I$$

(5.10)

Mit den von pXar aufgenommenen Spektren kann die Teilchenrate berechnet werden. Die pro Zeiteinheit und Flächeneinheit einfallenden Photonen berechnen sich über

$$R = \frac{n_{\text{Ereignisse}}}{n_{\text{Trigger}} \cdot t_{\text{Trigger}}} \cdot \frac{1}{A}.$$ (5.11)

Dabei gibt $n_{\text{Ereignisse}}$ die Gesamtzahl der während der Messzeit detektierten Teilchendurchgänge an, n_{Trigger} die Anzahl der von der Messsoftware gesendeten Triggersignale und A die Querschnittsfläche des Detektors. Die effektive Messzeit pro Trigger $t_{\text{Trigger}} = 25 \text{ns}$ entspricht dem zeitlichen Abstand zweier Teilchenpakete (bunches) im Beschleunigerring des LHC (vgl. Abschnitt 2). Die erhaltenen Raten sind in Tabelle 5.2 dargestellt. Es ergeben sich Raten zwischen 0.4 MHz cm$^{-2}$ und 1.9 MHz cm$^{-2}$ für verschiedene Targets bei konstantem Röhrenstrom von 30 mA. Die Rate steigt mit größeren Strömen an.

5.3.1. Auftragung der Peakposition gegen den Röhrenstrom

Wie in Tabelle 5.1 dargestellt, wurden Messungen bei verschiedenen Röhrenströmen für fünf Module (M4550 - M4554) und zwei Einzelchipaufbauten (M0307 und SD63) durchgeführt. Die graphische Auftragung der Peakposition gegen den Röhrenstrom ist zusammen mit den Ergebnissen der linearen Regressionen für den Einzelchipaufbau SD63 in Abbildung 5.4 dargestellt. Für alle verwendeten Targets ergeben sich Steigungen der Größenordnung 10^{-2} Vcal mA$^{-1}$. Die gleiche Abhängigkeit zeigt sich auch für die übrigen Auslesechips.

Für jeden Auslesechip wird der Mittelwert aller ermittelten Steigungen der ausgemessenen Targets bestimmt. Abbildung 5.5 zeigt die Verteilungen der Mittelwerte für beide Analysemethoden. Sie besitzen Maxima bei Werten nahe null. Die Mittelwerte (mean) und quadratischen Mittel ($\text{root mean square}, \text{RMS}$) sind

$$\langle p_{1}^{\text{SG}} \rangle = 4.2 \cdot 10^{-3} \text{ Vcal mA}^{-1} \quad \text{RMS}_{\text{SG}} = 8.2 \cdot 10^{-3} \text{ Vcal mA}^{-1}$$

(5.12)

$$\langle p_{1}^{\text{MW}} \rangle = 5.2 \cdot 10^{-3} \text{ Vcal mA}^{-1} \quad \text{RMS}_{\text{MW}} = 10.7 \cdot 10^{-3} \text{ Vcal mA}^{-1}.$$ (5.13)
Abbildung 5.4.: Auftragung der ermittelten Peakpositionen gegen den gewählten Strom der Röntgenröhre für den Einzelchipaufbau SD63. Es wird eine Gerade mit Steigung null erwartet, die erhaltenen Steigungen bestätigen dies.

Abbildung 5.5.: Histogramm der gemittelten Steigungen jedes Auslesechips der fünf Module und zwei Einzelchipaufbauten nach Anpassen einer einzelnen Gaußfunktion und des von MoReWeb verwendeten Algorithmus.
5.3. Abhängigkeit der Peakposition von Photonenrate

Abbildung 5.6.: Energiekalibrationsgeraden des Einzelchipaufbaus SD63 bei verschiedenen Röhrenströmen. Die erhaltenen Steigungen weichen nur leicht voneinander ab, die acht Geraden sind nahezu identisch.

Berechnen der Standardabweichung der beiden arithmetischen Mittel ergibt mit \(n = 82 \)

\[
\sigma(\langle p_{SG}^1 \rangle) = \frac{\text{RMS}_{SG}}{\sqrt{n}} = 0,9 \cdot 10^{-3} \text{ Vcal mA}^{-1}
\]

\[
\sigma(\langle p_{MW}^1 \rangle) = \frac{\text{RMS}_{MW}}{\sqrt{n}} = 1,2 \cdot 10^{-3} \text{ Vcal mA}^{-1},
\]

wobei \(n = 82 \) die Gesamtzahl an Einträgen im Histogramm ist. Damit liegt der aus der Analyse mithilfe einer Gaußfunktion erhaltene Wert \(\langle p_{SG}^1 \rangle \) innerhalb des Standardabweichung des Ergebnisses des \textit{MoReWeb}-Algorithmus \(\langle p_{MW}^1 \rangle \). Die beiden Analysemethoden liefern konsistente Ergebnisse. Die erhaltenen Steigungen \(p_1 \) sind signifikant größer als null, aber von der Größenordnung \(10^{-3} \text{ Vcal mA}^{-1} \) und damit sehr klein.

5.3.2. Vergleich der Steigungen der Energiekalibrationsgeraden

Zusätzlich besteht für die ausgemessenen Auslesechips die Möglichkeit, wie in Abschnitt 5.2 beschrieben, eine Energiekalibrationsgerade für jeden Röhrenstrom aufzustellen. So kann das Ergebnis des Abschnitts 5.3.1 überprüft werden: Ist die Peakposition unabhängig von der Photonenrate, wird sich die Steigung der Kalibrationsgerade für verschiedene Röhrenströme nicht ändern.

Die erhaltenen Energiekalibrationsgeraden sind für den Einzelchipaufbau SD63 in Abbildung 5.6 gezeigt. Die Steigungen der Geraden für die acht verwendeten Ströme weisen lediglich leichte Unterschiede auf. Die Peakpositionen der Photonen mit gleicher K_{\alpha}-Energie liegen alle nahezu an derselben Stelle im Diagramm. Diese qualitative Beobachtung deckt sich mit den quantitativen Berechnungen der Steigungen nahe null in Abschnitt 5.3.1.
Abbildung 5.7.: Histogramm der Steigungen der Kalibrationsgeraden nach Anpassen einer Gaußfunktion und des MoReWeb-Algorithmus. Für die 82 Auslesechips, bei denen die Ratenabhängigkeit der Peakposition bestimmt wurde, ist der Mittelwert der Steigungen aus den verschiedenen Kalibrationsgeraden eingetragen.

Da die Peakpositionen nahezu unverändert bleiben, sind auch die Abweichungen in den bestimmten Steigungen sehr klein.

Mit diesem Resultat kann die Bestimmung der mittleren Steigung der Kalibrationsgeraden noch einmal durchgeführt werden. Für die 82 Auslesechips, bei denen die Ratenabhängigkeit ausgemessen wurde, werden die Mittelwerte der Steigungen der Kalibrationsgeraden gebildet. Zusammen mit den Ergebnissen der anderen Auslesechips für 30 mA wird analog zu Kapitel 5.2 ein Histogramm aller Steigungen erstellt. Das Ergebnis ist in Abbildung 5.7 dargestellt. Die erhaltenen Mittelwerte und quadratischen Mittel

\[
\langle p_1^{SG}\rangle = 47.71 \text{ e}^{-\text{Vcal}} \quad \text{RMS}^{SG} = 2.05 \text{ e}^{-\text{Vcal}} \\
\langle p_1^{MW}\rangle = 47.46 \text{ e}^{-\text{Vcal}} \quad \text{RMS}^{MW} = 1.95 \text{ e}^{-\text{Vcal}}
\]

(5.16)

(5.17)

sind konsistent mit den in Abschnitt 5.2.1 bestimmten.

Der Auslesechip PSIdigV2.1-respin weist damit eine sehr kleine Ratenabhängigkeit auf. Sie wirkt sich nicht signifikant auf die Steigung der Energiekalibrationsgeraden aus. In Kapitel 5.3 werden die erhaltenen Ergebnisse mit den Eigenschaften früherer Auslesechip-versionen verglichen.

5.4. Einfluss von Temperaturzyklen auf Funktionalität und mechanische Stabilität von Modulen

Zur Untersuchung des Einflusses thermischer Ausdehnung auf die mechanische Stabilität und elektrische Funktionalität wurden mit drei Modulen Temperaturzyklen zwischen −20°C und +20°C gefahren. Ein Zyklus (von +20°C auf −20°C und zurück auf +20°C) dauerte etwa eine Stunde. Die Module M4520 und M4521 durchliefen 110 Zyklen, das Modul M4559 durchlief 71 Zyklen. Vor und nach den Temperaturzyklen wurde mit der...
5.4. Einfluss von Temperaturzyklen auf Funktionalität und mechanische Stabilität von Modulen

Röntgenröhre bei 30 mA Röhrenstrom mindestens 1200 Sekunden lang eine Map der Module aufgenommen. Durch Vergleichen der Ergebnisse vor und nach den Temperaturzyklen können Aussagen über Einflüsse der Temperaturänderungen getroffen werden.

Abbildung 5.8.: Oben: Fotografie eines Moduls von oben mit Blick auf die Komponenten oberhalb des Sensors (High Density Interconnect (HDI) sowie Signal- und Stromkabel).
Tabelle 5.3.: Auflistung aller Pixel des Moduls M4520, die vor und nach den 110 Temperaturzyklen keine Einträge in den Hitmaps besaßen. Dabei bezeichnet „Pix 5 3 0“ das Pixel in Spalte 3, Reihe 0 auf Auslesechip 5. \(n_{\text{vor}} \) ist die Anzahl an detektierten Ereignissen vor Durchführung der Temperaturzyklen, \(n_{\text{nach}} \) die Anzahl nach den Temperaturzyklen. Die kursiven Namen geben die nächsten Nachbarn des defekten Pixels an.

<table>
<thead>
<tr>
<th>Pixel</th>
<th>(n_{\text{vor}})</th>
<th>(n_{\text{nach}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pix 5 3 0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pix 5 2 0</td>
<td>383</td>
<td>410</td>
</tr>
<tr>
<td>Pix 5 2 1</td>
<td>422</td>
<td>393</td>
</tr>
<tr>
<td>Pix 5 3 1</td>
<td>424</td>
<td>439</td>
</tr>
<tr>
<td>Pix 5 4 1</td>
<td>371</td>
<td>410</td>
</tr>
<tr>
<td>Pix 5 4 0</td>
<td>360</td>
<td>386</td>
</tr>
</tbody>
</table>

bar benachbart. Für beide Regionen zeigt sich, dass keine Abschirmungen darüber liegen. Da die benachbarten Pixel eine deutlich höhere Anzahl an Einträgen aufweisen, handelt es sich auch hier um defekte Lotkugelverbindungen. Alle auf diesem Modul gefundenen Defekte waren aber schon vor Durchführen der Temperaturzyklen vorhanden.

Auf Modul M4559 wurden keine Pixel mit null Einträgen gefunden. Da der minimale Eintrag aller Pixel vor und nach den Temperaturzyklen bei 13 Ereignissen liegt, ist davon auszugehen, dass auf diesem Modul alle Lotkugelverbindungen funktionieren und auch sonst keine Pixeldefekte vorhanden sind.

Zusammenfassend kann festgehalten werden, dass bei allen drei untersuchten Modulen Temperaturänderungen, wie sie am CMS-Experiment auftreten werden, keine zusätzlichen Defekte erzeugt haben. Die auftretenden mechanischen Spannungen verändern weder die leitenden Verbindungen (Lotkugeln zwischen Auslesechips und Sensor und wire bonds), noch haben sie einen Einfluss auf die Verklebung der Komponenten des Moduls.

<table>
<thead>
<tr>
<th>Pixel</th>
<th>n_vor</th>
<th>n_nach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pix 2 20 44</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pix 2 19 43</td>
<td>115</td>
<td>278</td>
</tr>
<tr>
<td>Pix 2 19 44</td>
<td>96</td>
<td>30</td>
</tr>
<tr>
<td>Pix 2 19 45</td>
<td>29</td>
<td>213</td>
</tr>
<tr>
<td>Pix 2 20 45</td>
<td>18</td>
<td>203</td>
</tr>
<tr>
<td>Pix 2 21 45</td>
<td>46</td>
<td>231</td>
</tr>
<tr>
<td>Pix 2 21 44</td>
<td>106</td>
<td>39</td>
</tr>
<tr>
<td>Pix 2 21 43</td>
<td>182</td>
<td>275</td>
</tr>
<tr>
<td>Pix 2 20 43</td>
<td>131</td>
<td>290</td>
</tr>
<tr>
<td>Pix 2 27 15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pix 2 27 16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pix 2 27 17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pix 2 26 14</td>
<td>233</td>
<td>644</td>
</tr>
<tr>
<td>Pix 2 26 15</td>
<td>214</td>
<td>589</td>
</tr>
<tr>
<td>Pix 2 26 16</td>
<td>225</td>
<td>640</td>
</tr>
<tr>
<td>Pix 2 26 17</td>
<td>219</td>
<td>659</td>
</tr>
<tr>
<td>Pix 2 26 18</td>
<td>194</td>
<td>592</td>
</tr>
<tr>
<td>Pix 2 27 18</td>
<td>206</td>
<td>627</td>
</tr>
<tr>
<td>Pix 2 28 18</td>
<td>242</td>
<td>608</td>
</tr>
<tr>
<td>Pix 2 28 17</td>
<td>250</td>
<td>678</td>
</tr>
<tr>
<td>Pix 2 28 16</td>
<td>224</td>
<td>662</td>
</tr>
<tr>
<td>Pix 2 28 15</td>
<td>230</td>
<td>608</td>
</tr>
<tr>
<td>Pix 2 28 14</td>
<td>247</td>
<td>664</td>
</tr>
<tr>
<td>Pix 2 27 14</td>
<td>254</td>
<td>683</td>
</tr>
<tr>
<td>Pix 4 49 76</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pix 4 49 77</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pix 4 50 76</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pix 4 50 77</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pix 4 48 75</td>
<td>243</td>
<td>653</td>
</tr>
<tr>
<td>Pix 4 48 76</td>
<td>231</td>
<td>676</td>
</tr>
<tr>
<td>Pix 4 48 77</td>
<td>240</td>
<td>763</td>
</tr>
<tr>
<td>Pix 4 48 78</td>
<td>244</td>
<td>666</td>
</tr>
<tr>
<td>Pix 4 49 78</td>
<td>274</td>
<td>760</td>
</tr>
<tr>
<td>Pix 4 50 78</td>
<td>279</td>
<td>742</td>
</tr>
<tr>
<td>Pix 4 51 78</td>
<td>549</td>
<td>1376</td>
</tr>
<tr>
<td>Pix 4 51 77</td>
<td>473</td>
<td>1384</td>
</tr>
<tr>
<td>Pix 4 51 76</td>
<td>440</td>
<td>1330</td>
</tr>
<tr>
<td>Pix 4 51 75</td>
<td>509</td>
<td>1275</td>
</tr>
<tr>
<td>Pix 4 50 75</td>
<td>251</td>
<td>666</td>
</tr>
<tr>
<td>Pix 4 49 75</td>
<td>261</td>
<td>678</td>
</tr>
</tbody>
</table>
6. Zusammenfassung und Diskussion

Charakteristische Röntgenstrahlung entsteht durch Anregung der Hüllenelektronen von Targetmaterialien. Bei den dann auftretenden Übergängen von Elektronen aus einem energetisch höher liegenden Zustand in einen niedrigeren kommt es zur Aussendung von Photo-

des Kühlsystems kann der Spurdetektor wieder auf Betriebstemperatur gekühlt werden und ohne Einschränkungen seiner Funktionalität betrieben werden.

Literaturverzeichnis

A. Übersicht über untersuchte Auslesechips

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Ratenabhgk.</th>
<th>Temp.</th>
<th>pXar</th>
<th>Trim (Vcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M4520</td>
<td>✓</td>
<td>✓</td>
<td>16</td>
<td>2.2.4</td>
<td>Trim (Vcal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4521</td>
<td>✓</td>
<td>✓</td>
<td>16</td>
<td>2.2.4</td>
<td>Trim (Vcal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4550</td>
<td>✓</td>
<td>✓</td>
<td>16</td>
<td>2.2.4</td>
<td>Trim (Vcal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6, 10, 20, 30</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>M4551</td>
<td>✓</td>
<td>✓</td>
<td>16</td>
<td>2.2.4</td>
<td>Trim (Vcal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6, 10, 20, 30</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>M4552</td>
<td>✓</td>
<td>✓</td>
<td>16</td>
<td>2.2.4</td>
<td>Trim (Vcal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6, 10, 20, 30</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>M4553</td>
<td>✓</td>
<td>✓</td>
<td>16</td>
<td>2.2.4</td>
<td>Trim (Vcal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6, 10, 20, 30</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>M4554</td>
<td>✓</td>
<td>✓</td>
<td>16</td>
<td>2.2.4</td>
<td>Trim (Vcal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2, 6, 10, 20, 30</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>M4557</td>
<td>✓</td>
<td>✓</td>
<td>16</td>
<td>2.2.4</td>
<td>Trim (Vcal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4558</td>
<td>✓</td>
<td>✓</td>
<td>16</td>
<td>2.2.4</td>
<td>Trim (Vcal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4559</td>
<td>✓</td>
<td>✓</td>
<td>16</td>
<td>2.2.4</td>
<td>Trim (Vcal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4560</td>
<td>✓</td>
<td>✓</td>
<td>16</td>
<td>2.2.4</td>
<td>Trim (Vcal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4561</td>
<td>✓</td>
<td>✓</td>
<td>16</td>
<td>2.2.4</td>
<td>Trim (Vcal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4562</td>
<td>✓</td>
<td>✓</td>
<td>16</td>
<td>2.2.4</td>
<td>Trim (Vcal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4563</td>
<td>✓</td>
<td>✓</td>
<td>16</td>
<td>2.2.4</td>
<td>Trim (Vcal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0307</td>
<td>✓</td>
<td>✓</td>
<td>20</td>
<td>1.7.3</td>
<td>Trim (Vcal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2, 6, 10, 14, 18, 22, 26, 30</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>SD63</td>
<td>✓</td>
<td>✓</td>
<td>20</td>
<td>1.7.3</td>
<td>Trim (Vcal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2, 6, 10, 14, 18, 22, 26, 30</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>
B. Analysemethoden zur Peakschwerpunktsbestimmung

Abbildung B.1.: Funktionsanpassung einer einzelnen Gaußfunktion (oben) und des MoReWeb-Algorithmus (unten) an ein charakteristisches Röntgenspektrum von Molybdän. Der Gaußfit wurde symmetrisch um die Spalte mit dem größten Inhalt durchgeführt, die gestrichelte Linie bei der MoReWeb-Anpassung zeigt die angepasste Gaußfunktion für den Untergrund.
C. Überprüfung der Qualität der Kalibrationsgeraden
